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A generalization of the classical Hertz-Knudsen and Schrage laws for the evaporation mass and energy
fluxes at a liquid-vapor interface is derived from kinetic theory and a simple model for a velocity dependent
condensation coefficient. These expressions, as well as the classical laws and simple phenomenological ex-
pressions, are then considered for the simulation of recent experip@rsng and C. A. Ward, Phys. Rev. E
59, 419(1999]. It is shown that mean condensation and evaporation coefficients in the mass flow influence
the results only if they are small compared to unity and that the expression for evaporation mass flow
determines the temperature of the liquid. Moreover, it is shown that the expression for evaporation energy flow
plays the leading role in determining the interface temperature jump, which can be obtained in good agreement
with the experiment from the generalized kinetic theory model and phenomenological approaches, but not from
the classical kinetic-theory-based Hertz-Knudsen and Schrage laws. Analytical estimates show that the inter-
face temperature jump depends strongly on the temperature gradient of the vapor just in front of the interface,
which explains why much larger temperature jumps are observed in spherical geometry and the experiments as
compared to planar settings.
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I. INTRODUCTION evaporation and condensation, but that an expression for the

While evaporation and condensation phenomena hav%\{aporation energy flug is indispensable. AlsQ is deter-

been a subject of research and debate for more thawmed through mean evaporation and condensation coeffi-

100 years, the mechanism of transfer across a phase bourglSnts: Which may, but must not necessarily, have the same
values as the mean coefficients appearing in

ary was not a great focus of research because it was consid- Expressions foj andQ are derived in kinetic theory by

ered adequate to assume that the liquid-vapor interface is . : .
means of approximate solutions of the Boltzmann equation,

nearly at complete equilibrium. In particular this led to the. . .
assumption that at the interface both phases have the Sarwepartmular those obtained by the Chapman-Enskog method,

temperature, even outside of equilibrium. See REf.for a aES troe%l(")';? rl:]tlecrronsggrﬁ)lSaﬁggge?ﬁarﬂggtp(;??ﬁgllllittl:rsazﬁeantrlg
good overview of the history of this topic. P P : '

Just recently, a series of steady-state evaporation and cofucroscopic cendensation probability is assumed to be con-

densation experiments performed at the University of Tor—Stam[s_lJ]’ but molecular dynami¢MD) simulations show

. . that it indeed depends on the impact energy of a vapor par-
gc;otg%l\al\éa:;%;ajra%s: %fsﬁn?ﬂ?g'gnf g |:£?§Sgc3[i|e ticle that hits the liquid as well as on the temperatlyef
v | _— . . . . _
interface, something not previously observed. These experf—he liquid surface. See Refl2] for an overview on molecu

ments, in the following referred to as “Toronto experiments,” ar dynamic apprqaches_ ari3—-1q for more detailed mo-
lecular dynamic simulations.

triggered new interest in the field, including the results pre- In Refs.[16,17 the authors propose a condensation coef-

sented here. ficient of the form
The main quantity of interest in evaporation and conden-

sation problems is the evaporation ratevhich is defined as —Epy
positive in the case of evaporation and is negative in the case 0=yl 1- wexp(R—_?m> , (1)
of condensation. In many theories its computation involves '
mean evaporation and condensation coefficients, which argnoreE s the translational molecular energy in the direc-
loosely speaking, the probabilities for a liquid particle to tion nor

df il q h mal to the surfac& is the gas constant, andand w
evaporate and for a vapor particle to condense. There are tWa, ¢onstants that describe the details of the condensation
main roads to comput¢ (or the coefficients either by

L . ¥ probability. In Ref.[16] it is also observed that most vapor
means of kinetic-theory-based arguments or by using ideag,gjecyles that do not condense exchange energy with the

of thermodynamics of irreversible process&tP). liquid and are thermalized.
Our sgpsequent analysis wil show that knowledgg if The energy dependent coefficigid) was used in direct
not sufficient to successfully simulate, and underSta”dsimulation Monte CarlgDSMC) simulations[18], but to our
knowledge it has not been used so far to compute expres-
sions for the mass and energy fluxes through the interface,
*Electronic address: struchtr@me.uvic.ca andQ. This task will form the first part of this paper, where
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we use expressiol) together with approximate velocity can be obtained in good agreement to the experiment by
distribution functions at the interface to compute and discusadijusting the parameteis o in Eqg. (1) or the phenomeno-
expressions foj andQ. Our expressions turn out to be more logical coefficients in the TIP-based models.

general than expressions normally obtained from kinetic (jv) The interface temperature jump depends strongly on
theory, but reduce to classical models—e.g., the classicahe temperature gradient of the vapor at the interface.
Hertz-Knudsen expressior$,6] or the Schrage correction vy The last finding explains why much larger temperature

[1] to these—for certain choices of the parameters. jumps are observed in spherical geometry, as compared to
As we proceed, it will be seen that the values of the COplanar settings.

efficients ¢y and w have a marked influence on the tempera- (vi) And, finally, the Toronto experiment is better de-

ture jump at the interface._ In particulg_r they can be Ch°$e cribed by a mixed planar-spherical geometry, which might
such that the temperature jump is positive, while the classic xplain the large temperature jump observed ’

models, which assume a constant coefficieet, w=0), will The remainder of the paper is organized as follows.

In most cases lead to small negative jumps. Section Il recalls some basic results from kinetic theory
After discussing kinetic-theory-based expressions Qor ) P . ’
g Y P @® and Sec. lll discusses the vapor distribution function at the

and j we briefly discuss simple models based on TIP: ) . :
[19-23. These models find expressions joand Q by as- interface and introduces evaporation and condensation coef-

suming linear laws between “thermodynamic fluxes” andfiqients. This forms the base of the derivations of the gener-
“thermodynamic forces” that guarantee positive entropy gen@lized Hertz-Knudsen and Schrage laws for evaporation
eration at the interface. mass and energy fluxes in Secs. IV and V. Phenomenological
Ward and Fang23,24 suggested statistical rate theory theories for evaporation mass and energy fluxes, including
(SRT) as an alternative to kinetic theory and TIP, and wethose based on statistical rate theory, are briefly presented in
shall discuss their expression fpin relation to TIP. Unfor- ~ Sec. VI. Section VIl discusses the experimental setup and the
tunately, SRT does not provide an expression for the energgolution of the governing equations for simple geometries
flux Q, and in order to complete the SRT model, we decidedhat mimic the experiment. The analytical solutions are then
to employ the TIP expression f@. considered in Sec. VIII in an approximative manner to esti-
A popular configuration for studying one-dimensional Mmate the importance of various terms in the equations. The
evaporation and condensation phenomena is the parallel sfttdings there are then supported by numerical solutions in
face geometry[7,8,21,25-28 a topic that goes beyond the Sec. IX. Finally we briefly review our findings and present
scope of this paper and will not be further discussed. Anotheth€e conclusions.
interesting recent approach to the topic is the Van der Waals
square gradient mod§R9-31], which also shall not be dis- Il. VELOCITY DISTRIBUTION FUNCTION AND
cussed further. MOMENTS
After discussing the theory behind the expressionsjfor
and Q, we next consider simple one-dimensional models in In kinetic theory, the behavior of a system of molecules is
planar, spherical, and mixed planar and spherical geometriegescribed by the distribution functidic;, x;,t), which is de-
which approximate the conditions of the Toronto experi-fined such thatf(c;,x;,t)dcdx is the number of molecules
ments[2—4] where only the boundary temperatures of liquid with velocities in{c,c+dc} and positions in{x,x+dx}, at
and vapor and the pressure in the vapor were prescribed. Thiene t. Knowledge of the distribution function allows the
balances of mass and energy are solved for the liquid andomputation of bulk properties such as mass density
vapor temperature profiles. The complete solution requires
the expressions for mass and energy flux across the interface, ("
developed from kinetic theory, SRT, and TIP. The analysis is p=m
performed for relatively slow evaporation and condensation.
The equations are solved to yield the mass and energy fluxggomentum density
per unit area and the liquid and vapor temperature profiles.
Before presenting some numerical solutions, we do a f“
pL; =

fdc, (2

—00

simple analysis of the results based on the order of magni- mg fdc, 3
tude of certain terms in the solutions and equations. The
findings are then supported by the numerical solutions. |
particular we shall show that, at least for the conditions o
the Toronto experiment, the following holds. 3 3 “m
(i) The condensation and evaporation coefficients in the pu= —p:—pRT:f —C?fdc, (4)
mass flowj influence the results only if they are very small 20 2 - 2
compared to unity.
(ii) The expression for mass flojvdetermines the tem- Préssure tensor
perature of the liquid, which is close to the saturation tem- "
peratureTg,(p,) Wherep, is the pressure prescribed in the P :f mGC; fdc, (5)
vapor. o
(iii) The expression for energy flo® plays the leading
role in determining the interface temperature jump, whichand heat flux

—00

?nternal energy
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“m aT
g = f ECZCi fdc. (6) g=- K&, (12)
1

—00

Here,m denotes the molecular mag®=k/m s the gas con- and Navier and Stokes,

stant wherek denotes Boltzmann’'s consta,=c;—v; is the . o 2dv

peculiar velocity,y; is the mean velocity, angd denotes the Pk = Pk + ,u(—' + K -—5 ) (13
pressure which is related to temperature and density by the M I 3%

ideal gas lawp=pRT. where u=+£x/R is the viscosity. In this paper we shall ig-

In the following, we shall be mostly inter_est_ed_ in the hore shear stresses, so tat=ps,; then, the CE distribu-
fluxes of mass and energy through a vapor-liquid interfacjon reduces to

(in normal direction. When the normal of the interface

points into thex;=z direction, these are defined as _ 2 k c? 5\ dT
fCE_fM l___ k_2__ - . (14)
o 5Rp "\2RT* 2T/ dx,
1= J_m me, fdc @) For equilibrium conditions, in particular vanishing tempera-
ture gradientdT/ox,=0, the CE distribution reduces to the
and Maxwellian.
“m
Q:j Eczczfdc, (8) I1l. DISTRIBUTION FUNCTION AT THE INTERFACE
) When a patrticle in the vapor phase hits the liquid-vapor
respectively. _ interface, it will undergo an interaction with the liquid par-
The velocity distributionf is determined by the Boltz- (icles at the interface. Depending on the microscopic condi-
mann equatiori32] tions for the particular interaction, the particle can be ab-
of of sorbed by the liquid—i.e., it condenses—or it might be
TG T S(f), (9)  reflected back into the vapor.
1

The energy of liquid particles at the interface fluctuates
where S(f) denotes the collision term, which describes thedue to stochastic interactions between particles. Occasionally
change of the velocity distribution due to intermolecular col-a particle gains enough energy to leave into the vapor—the
lisions. The balance laws for mass, momentum, and energparticle is evaporated.
as well as the H theorem, can be derived by suitable averag- Obviously, evaporation and condensation processes will
ing of the Boltzmann equation over the microscopic velocityinfluence the distribution function at the interface and deter-
[32,33. mine the rates of mass and energy transfer over the interface
In equilibrium, the velocity distribution function does not in nonequilibrium situations.
change with time or location and the collision term must In asomewhat simplified model, condensation and evapo-
vanish, which implies that the equilibrium distribution is the ration processes can be described by several coefficients,
Maxwellian [32] which we shall discuss now.

p 1 c? . y
fm(p,T,C) = ———=—= ex . (10) A. Condensation coefficient

MRT{2#7RT 2RT . . . i .
The condensation coefficiemt is defined as the ratio of

Nonequilibrium solutions of the Boltzmann equation areincident molecules sorbed by the surface to those which ac-
considerably more complex. The Boltzmann equation can beually hit the surface. Molecules which do not condense are
solved by computer either directly or by DSMC simulationsreflected back into the vapor. Accordinglgy=1 if all inci-
[34], both of which are computationally expensive. dent molecules condense afg=0 if all molecules are re-

The Chapman-Enska@E) method expands the distribu- flected. Early theories of condensation, in particular the clas-
tion function about the Knudsen numbeg,. The Knudsen sical Hertz-Knudsen theory5,6], assume a condensation
number is the ratio of the mean distance a molecule travelsoefficientf,=1, and that assumption is still used regularly;
between collisiongmean free pathto a macroscopic length e.g., see Refl11].
associated with the vapor. The first-order CE expansion of Molecular dynamic simulations suggest that the conden-
the Boltzmann equation gives the distribution function assation coefficient depends on the energy of the incident mol-
[35] ecules and the interface surface temperaflide-1§. An in-

2 c2 5\dT 1 x C.C pident mplepule with high energy can penetrate more d(_aeply

fee= fM(]_ - k(—z - —)— + o into the liquid phase, where it will undergo many interactions
SRp "\2RT" 2T/dx 5SRp RT with liquid molecules; this increases its likelihood of con-

. dve 2, densati_onz since the_ condensing particle will di;sipate energy

((9—)(k + a - §§—Xr ik))i (11 to the liquid[16]. A higher surface temperature increases the

energy of the surface molecules and thus the likelihood of
wherex is the thermal conductivity. In particular this distri- incident molecules having collisions directly at the surface.
bution gives the laws of Fourier, This reduces incident molecule penetration, which results in
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Vapor
Condensing Reflected vapor molecules
molecules Vapor molecules specular: y (1 -0, ) e ( ?,.T, ),
acfv(Pv’Tv) to be reflected diffuse: (1—7)(1—00)f,,, (p*, T,)

@-6.)1(2,.1,)

FIG. 1. Velocity distributions
T, at the interface.

T, Evaporating Interface
molecules
our
Liquid

a smaller condensation coefficient. To accommodate this bes determined to guarantee the conservation of mass.
havior, Tsurutaet al. suggested that the condensation coeffi- To distinguish between specular and diffuse reflection, the

cient is of the form[16] accommodation coefficieny is introduced, withy=1 for
2 pure specular reflection ang=0 for pure diffuse reflection.
0, = lﬂ{l —w exp( G )} ' (15) Figure 1 shows the distribution functions of particles trav-
2RT, eling towards or away from the interface; the inditesdv

denote properties of liquid and vapor, respectively. From the
figure it follows that the condition for conservation of par-
Steicles in reflection that determings read

where ¢y and o are constants], is the temperature of the

liquid at the interface, and, is the particle velocity with

respect to the interface, normal to the interface. We shall u

this expression below to compute average condensation co-

efficients. Note that fow=0 the condensation coefficient is a f . CN1 = 0)fyrer(py, T, )dC + J c(1-y)(1-6)
c= [

constant. =0

Due to its definition, the condensation coefficient must lie .
between 0 and 1; this must also be true for Ep). If c2 Xtw(p ,T|)dC+J (1 -09f,(p,, T,)dc=0. (16)
—®, B,=¢ so that 0<¢<1. For ¢2=0, 6.=(1-w); this c=0

requiresw<1 and also implieso=1-1/is. Moreover, since
the condensation probability of a molecule should increase
with its energymg2 and decrease with higher surface tem-
peratureT;,  should be positive, so thab is restricted to The evaporation coefficiert, is a measure of how many
0= w=1. Tsurutaet al.[16] report from MD simulations for molecules escape from the surface into the vapor. Several
argon thatyy and w have values of 0.971-0.685 and 0.086—definitions are possible, and here we define the evaporation

C. Evaporation coefficient

0.554, respectively. coefficient such that the distribution of the evaporating mol-
ecules is given b¥e,ap= Ocf\i(Pevap: Ti»C) Where pg,qp is an
B. Accommodation coefficient effective pressure of the evaporating molecules §nd the

liquid temperature. Note thad, is not a constant, but can
depend on physical variables of the system, such,ag,, C,
tc. We proceed by discussing the functigyas well as the

With 6.# 1, there is a portion of particles which hit the
liquid interface and then bounce back into the vapor. In gen
eral, the rebounding molecules will have exchanged energ
and momentum with the liquid particles, and some knowl-PT€SSU&®evap o , ,
edge about the reflection mechanism is required. We shall From Fig. 1 follows the distribution of particles directly at
adopt the classical Maxwell model, which assumes that molthe interface as

ecules interact with the interface in two basic mechanisms: fe ~0= Oefm(Pavap T) + YL = 60 oDy To)
specular and diffuse reflection. z
Specular reflection describes molecules that maintain their +(1-y)(1-6)fu(p,T),
energy and do not react thermally with the surface. The
specularly reflected molecules maintain the distribution of fCZ<O:fU(prU)_ (17)

the incident molecules, except with mirrored velocities.

Diffuse reflection describes molecules which do not con-Let us now consider an equilibrium case, whéjeT,=T
serve their energy and undergo a complete thermal intera@nd no net evaporation or condensation occurs, which im-
tion with the surface. Diffusely reflected molecules leave in gplies thatC;=c;. In this case, the vapor pressure must be the
Maxwellian distributionfy,(p*, T;,C) which is determined by saturation pressurep,=ps,(T), and the distribution(17)
the liquid temperaturd@, and an effective pressugé, which  must be the Maxwellian at the saturation pressure—i.e.,
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fe ~0= Oefm(Pevap T) + Y1 = ) fu(Psad T), T) equilibrium of the liquid: any gradients in temperature and
‘ . other quantities in the liquid are assumed to not affect the

+(1 =2 =-0)fu(p,T) = fu(psadT), T), distribution of evaporating particles.

fCZ<0 = fv(pv!TU) = fM(psat(T)yT) . (18) D. Knudsen |ayer
For these particular conditions, E@.6) for the pressurg’ In what follows it is assumed that all vapor molecules
reads interacting with the interface have the bulk vapor distribu-
tion, while those leaving the interface have a distribution

f c,y(1-6,) associated with the interface.

¢,0 In reality, these two different molecular streams interact in

a small layer in front of the interface, which alters the distri-
X fyr(Pead T), THdC + J (1 -9)(L1-0)fyu(p", Tde butions of both. The interactions cause the distribution of the

¢, =0 escaping molecules to approach that of the bulk vapor. The
region where this equilibration occurs is referred to as the
+J (1 = 6 fu(psa T), TdC = 0. Knudsen layer, which typically has a thickness of approxi-
¢, <0 mately one mean free pafZ2].

_ _ Within the Knudsen layer, the velocity distributions of
From Eqg. (10 it follows that we can writefy(p,T,C)  poth molecule streams can no longer be described by the

=pF(T,C) and thus Eq(18) can be rewritten as bulk vapor and interface distributions. The distribution

* _ hange with location, making it difficult to resolve. Since the

O+ Psad T) YL = 6) + P (1= 6)(1 = 9) = pealT). che \
Pevaplle ¥ Psa T L = ) +p (1= 00)(1 = %) = PsalT) incident vapor molecules no longer have the bulk vapor dis-

(19 tribution, the characteristics of the vapor near the wall will
Since Je2oCA 1= 0 Frn(Psad 1), T)dC=f ¢ —oC(1 ) be aItere_d. Howe\_/er, the effects are usyally small, at least for

z z small to intermediat®&y,,. Because of this and the complex-

ity of the altered distribution functions, the Knudsen layer is
often neglected or set to zero thickness, and incident mol-

X fu(psalT), T)dc, the equation fop™ assumes the form

(P~ PsadT) c(1-y)(1-6)Fdc=0. ecules are assumed to possess the bulk vapor distribution up
=0 to the wall. This will be done here as well.
The last equation implies thgt"=ps(T) in equilibrium, Sone[11], Cercignani[32], Rebrov[36], and Meland and
since the integral is different from zero. With this it follows Ytrehus[37] provide a more detailed analysis of the Knud-
from Eq.(19) that sen layer.

peuapge = psal(T) 0(3

must hold in thermal equilibrium. Most notably, this shows
that evaporation and condensation coefficients are not inde-

IV. GENERALIZED HERTZ-KNUDSEN THEORY

A. Distribution function

pendent. In the previous section we discussed the distribution func-
The distribution of evaporating particles in equilibrium tion at the interface, and now we shall use the results to
(E) is therefore given by compute the evaporation fluxand the corresponding heat
flow Q as defined in Eqg.7) and(8). The result depends on
fevap = befm(Pevap T:C) = fePavaph (T,C) the bulk distribution of the vapof,, and in this section it is
= 0pead TF(T,C) = 6 (PeadT), T,C) . assumed that the vapor is in a Maxwellian distribution where

the pressure differs from the liquid saturation presspye,
This means that in equilibrium the distribution e@¥aporat-  + p.,(T,), and the temperatures of vapor and liquid are al-
ing particles can be expressed by tbendensatiorcoeffi-  |owed to be differentT, # T,. This is the basic assumption of
cient and the saturation pressure. The same function can kge classical Hertz-Knudsen theory, and for this reason we
used in nonequilibrium, if one assumes that the nonequilibgonsider it here. In nonequilibrium between vapor and liquid
rium between vapor and liquid has negligible effect onpne will expect temperature gradients in liquid and vapor, so
evaporation. Under this assumption, the nonequilibriumthat the Chapman-Enskog distributioh4) will be a more
evaporation distribution follows from replacing the tempera-reasonable choice—it will be considered in the next section.
ture T by the liquid temperatur, so that All computations are performed in a frame where the in-
_ terface is at rest. The vapor has a net velooityj/ p, with
Fevap= Ocfia (Pea T0), T, ©)- (20 respect to the interface, and ths=c,—j/p, whereczvis the
With 6, given by Eq.(15) it follows that fe,,, dependsonly  microscopic velocity of a particle relative to the interface and
on the state of the liquid, through the temperat@ireThus, C, the peculiar velocity, which is measured with respect to
the use of Eq(20) ignores any effect that the vapor might the rest frame of the vapor. This difference is ignored in the
have on evaporation, such as strong impacts of vapor papresent section by settinG,=c,, so the results can be ex-
ticles that kick a liquid particle out of the interface. Another pected to be valid only for slow evaporation or condensation
assumption inherent in the use of EQO) is that of local rates. Then, the vapor distribution function is given by
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p 1 c2 C. Energy flux
fv:fM(pvav) = . exp - . (21) .
mRT, \27RT,3 2RT, The computation of the energy flug) follows the same

o ~_line: after splitting into two half-space integrals and inserting
The distribution of the specularly reflected molecules is iden£q. (2), integration yields

tical to the incident distribution, except that the signs of the

terms containing, are reversed. Since the Maxwelligal) _ \/z == r—
is quadratic in the velocity, reversing the sign of the velocity ~ @~ W[@(T|,T|)psal(T|)\rR'|'| - (T, T,)P,VRT, ],
for the reflected distribution has no effect; thus, the distribu-

tion of specularly reflected particles is (28)
‘ Ty=f T where the mean condensation and evaporation coefficient for
vref(Por To) = Tn(Po, Ty energy exchange at the interface is given by
Under these assumptions, the distribution function of the va- T.7) = T +(1 - T.T 29
por just at the interface is given by (TN = 7edT ) + (1 =7 ee(Tin T, (29
with
fe 0= Ocfm(Psad T, ) + U1 = 60)Fm(p,, T,)
. : 2T +TT,
+ (1 - '}’)(1 - HC)fM(p ,T|), (22) (IDS(ThT) - l/l l-w 2(TI + T)2 (30)
fo 0= fu(P, T,). and
This will now be used in Eqg.7) and(8) to compute mass 1- ¢<1 _3—‘")
and energy flux over the interface. (T.T)=1- 1- zﬁ(l 0 T ) T
The pressurg” is computed from Eq(16) which now Pl w T+T,/) T
becomes 1-y1- 2
1-yp 31
S TR .1 +(/ AL 23 (31)
V27RT, v2#RT, 27RT, Here, ¢, can be considered as a mean energy condensation
so that coefficient for specularly reflected particles apgas a mean
energy condensation coefficient for diffusively reflected
T (thermalizegl particles.
P =p,\/ - (24) The equations above link the mean evaporation and con-
T, densation coefficientg(T,,T) and¢(T,,T) to the parameters

¢ and w that determine the condensation probability of a
single vapor particle hitting the interface. From the above
analysis follows that the mean evaporation coefficients
For the computation, the integral fgrcan be split into  #(T,,T,) and¢(T,,T,) are constants, while the mean conden-

B. Evaporation and condensation mass flux

half-space integrals sation coefficientsy(T;, T,) and ¢(T,,T,) depend explicitly
on the temperatures of vapor and liquid.
j:J mczfdc:J mczfcz>0dc+f mqfcz<odc.
=0 =0 D. Constant condensation coefficients
(25)

The factorw in Eq. (15) controls the temperature and
After inserting(22), integration yields velocity dependence of the condensation coefficient. Setting
=0 yields the constant condensation coefficiést ¢y and

1 Psal 1) Py
j= E(n(ﬂm) j% -7(T,T,) \’,ﬁ). (26) = & (psal(Tl) P )
| v \/ZT \C'R—Tl \,'/R_TU ’
Here,
2
T = \/j T)\VRT,
7(T,T) = ¢<1—TI+T> (27) Q=y W{psat( DVRT
is a mean condensation and evaporation coefficient for mass. - {'y+ 1- y(l -(1- ¢)L>]pv\,'ﬁ}. (32
The mass evaporation coefficient 48T, T)=4(1-w/2), a Y T,

constant which was already given in R¢L7]. The mass For the special cas¢=1 we recover the classical Hertz-
condensation coefficienf(T;,T,) depends on the tempera- Knudsen lawg5,6]

tures of both the vapor and liquid. Note that the accommo-

dation coefficient does not appear, since reflected particles do - 1 [psalT) b
not take part in evaporation or condensation. V’Z VRT, \f"RT,, '
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2 — j— B 2k (¢ 5\1dT
Q= \/;[Psat(TmRT"pv\”RTv]- 39 fCE-v-fM-v(l‘ép—Ffz(ﬁ‘a)h—z
. p 1 c?
Here we remark that for constant condensation and evapora- =T &XP 5o
tion coefficients, one often finds the generalized Hertz- MRT\27RT 2RT
Knudsen equation written 488,39 [ +Cz_Uz ) gic( 2 ) §>ld_T} -
RT 5pR“\2RT 2/Tdz]|
1 (OpsalT)  Ocp, 34) ,p _ ’
- \ZT \FTT| \"FRT . ( where second-order terms i anddT/dz are ignored.
J v

Integrating Egs(7) and(8) over full velocity space using

There is much debate regarding the values and dependenc%g' (37) yields the bulk mass and energy flows as
of ®. and®,. Eameset al. [38] and Marek and Strauf89] P 5 dT

reviewed the literature on condensation and evaporation co- 1= RT'? Q= Epvz_ iz

efficients of water and found that published values for both

vary between 0.01 and 1. It is agreed upon Batand®,  These can be used to rewrite the CE distribution as
are equal in equilibrium. If they are constants, then they must

2
be equal also outside equilibrium to satisfy equilibrium con- fop, = 1 exp(— C_>
ditions. That is,j=Q=0 for the equilibrium conditionsT, * mRT\27RT 2RT
=T,=T andp,=ps(T) only if O,=0O.. (@ 7 20/& 5
Note that even for the constant evaporation coefficient x| 1 ——(—— —)CZ+ __<___>Cz _
0.=y, the condensation coefficient in the energy flux, P\2RT 2 SPRT\2RT 2

¢(T},T,), depends on the temperatures as long as thermali- (38)
zation of reflected particles occurs—i.e. it 1—while the
corresponding coefficieny(T,,T,) is constant. Thermaliza-
tion implies an exchange of energy between vapor and liqui
without an exchange of mass, and that leads to the tempera-

This distribution will be used to represent the bulk vapor and
ahe distribution of condensing particles.
The distribution of the specularly reflected particles is

ture dependence of the heat transfer coefficient. given by
p 1 c?
fCE—v—ref = ) exp — S5
V. CHAPMAN-ENSKOG THEORY MRTV27RT 2RT
. . . H 2 2
c 7 2 c 5
A. Distribution function X{l +l_< _ _) - Q ( _ _>Cz:|-
p\2RT 2 5pRT\2RT 2

In general, net evaporation or condensation occurs in non-

equilibrium processes, where the vapor will not be in a Max-Note that the signs of the terms containiaghave changed
wellian distribution. As long as the vapor is not too rarefied,from the incident distributiori38).

the' C'hapman—Enskog distributiqt4) will g.ive a good de- The evaporating molecules are again described by the
scription _of the bulk_ vapor; we shall consider it now for the equilibrium Maxwellian distribution, Eqg10) and(20). The
computation of the interface fluxes. mean velocity of the evaporating molecules is assumed to be

As before, we consider a frame where the interface is agqual to the velocity of the liquid at the interface. Due to
rest. We assume that the normal of the interface points intenass conservatiom;p,=v,p,=j, and since the liquid density
the z direction and that the vapor velocity={0,0,v,} has is much greater than the vapor densitys p,, it follows that
no contribution parallel to the interface. Furthermore, wey <uv,. Since the vapor velocity is assumed to be small, the
shall assume that the flow velocity is relatively small and  liquid velocity is negligible. It follows that the evaporating
linearize in this quantity, so that the square of the peculiadistribution can be approximated by the equilibrium Max-

velocity is wellian with C=c, as in the Hertz-Knudsen approach pre-
sented earlier.
C?=c?-2w,c,+v°=C?-2u,0,. (35) The interface distribution is then given as

We substitute for the peculiar velocity into the Maxwellian fe,0= Ofm(Psa(T1). T) + AL = O fcep-rer(Pos To)
(10) and perform a first-order Taylor expansion about zero in +(1 -2 -6)fu(p.T),
v, to obtain the Maxwellian for a small mean vapor velocity:

fo <0=feeu(Py Ty), (39
p 1 2 CZUZ 7 U v v
fyp=—————=exp——||1+=]. (36) i ¢
" MRT\27RT 2RT RT where, again, the pressupe follows from Eq.(16).

Equation(36) is incorporated into the first-order CE dis- B. Mass and energy flux

tribution, Eq.(14), which for one-dimensionial problems can ~ Tedious manipulations reveal that the fluxes of mass and
be written as energy at the interface are given by
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1 psal(TI) . 1 (psal(TI) Py )
——R T,T) + 2R ,0(T,, T)RT, =2 -
i ([ 17T, T) 2¢(T, T)RT] RT J om \/R_T| VRT,
~[RIWTLT,) + 2R3e(T),T, #), 2 .
RT, Q=2 ;(psal(TI)\“JRTI - Pp,VRT,). (41)
5 1
Q= —( 7(T,,T) +R22<p(T|,T|) psat(T|)\rRT 2. Condensation probability independent of impact energy=0
2RT and y#1

This case assumes that all vapor particles have the same
likelihood for condensation, irrespective of their energy, and
allows for diffuse and specular reflection. In this case, the
whereR;B are the elements of the inverse of the mafix evaporation and condensation mass flux is given by

R
{ oRT, (T, T,) + Raoze(T), T, )} P,V RTU) ; (40)

5 .2 1 [psadT) P
T3’2<T +—Tv) = ( 2t I - _) 42
7311_2_¢+ﬂ | 2 : 2-y\2m VRT RT, 42
- 512
2 2 (M+T,) and the corresponding energy flux is
_ 3yge T _ g( 20 o ,ﬁ_[u—yww(z—w
Re="10R (T + 1,72 0 Peal TNRT = | = 1 -]
21-9)(1-9) n} ,—>
-———————— |p\RT,|. 43
=1y L3 AL+ A1 - T, P 43

1-yl-wi2) The mass flux does not depend on the number of specularly
5. T2 reflected particles, as can be seen from its independence from
1-¢+ygo{Ti+ (T, +T,)%2 RTi v, but the energy flux depends gnThis reflects the fact that
2 ) thermalized vapor particles exchange energy with the liquid,
. }Werl (21T, T, + 6Tv) while specularly reflected particles only exchange momen-
8 (T, +T,)"? v tum.
If all particles that do not condense are specularly re-
flected, we havey=1 and the energy flux reduces further to

2 24 |2 [ —
5/2 Q= ZT _[psal(Tl)VRTl - pv\“’RTv]- (44)
_§w<1_1 Yo(1-7) ) Ti gy
81+ Ywl2-1)) (T +T,)5? For the special case that all noncondensing particles are
7 Yo T3’2(22T2 +5T,T, - 2T2) thermalized,y=0, we obtain instead

712 '
20 (TI T ) Q = le (psal(Tl)\’RT

Comparison with Eqs(26) and (28) indicates that for the 2-¢
Maxwellian caseR;1=R,3=1 andR3=R,+=0, so that in 2T, -T, 2T,-T,| —
this caseR is the unit matrix. B voT P, VRT, | (45)

The factors in the square brackets in EG#0) are the 0 ’
mean evaporation and condensation coefficients. It is evidefote that all cases discussed here fulfill the equilibrium
that they are complicated functions of the temperatliygf, ~ conditions—that isj=Q=0 if T)=T,=T andp,=ps(T).
and the coefficienty, w, i, but we shall not give the explicit Equation(42) for the mass flow is due to SchrapH; see
expressions. Instead, we consider some special cases for taso [40]. Ytrehus [41], through comparison with the
parameters. Bhatnager-Gross-Krook-Welander model equation and
DSMC simulations, finds that the Hertz-Knudg@tK) mass
flux (33) underestimates the mass flux by an approximate
factor of 2. He also observes that the Schrage expregén
1. All vapor particles condensew=0 and =1 leads to a slightly overestimated mass flux, likely due to
Ineglect of collisional effects in the Knudsen layer.

C. Constant condensation coefficients

The most common assumption in the literature is that al
vapor particles that hit the interface condense; this corre-
sponds to settingd,=1—that is, =0 and ¢=1. For this
case, mass and energy fluxes are twice as large as for the The momentum flux per unit area normal to the interface
classical Hertz-Knudsen theo(g3)—i.e. [1,40], is given by

D. A remark on momentum flux
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| [2-8 -3
= . =j|l=-=+h|=-=||+q,|=-=]=0,
Pz Lm‘ifdc 7 J[ﬂ T, ”(Tv T/, T
When evaluated in the bulk vapor, where the distribution is
given by Eq.(37)—i.e., under omission of quadratic terms whereg=h-Tsis the Gibbs free energy.
and shear stress effects—this yields We follow the ideas of classical TIP and write the entropy

production ¢ as a sum of products of “thermodynamic
fluxes” J, and “thermodynamic forces®,,

(48)

P2apuik = Py -

When computed with the interface distributio(B39), =S F
P_sintertacelS different from the bulk value, with an expression g= - Al A1
that is not shown here. Barrett and Clemg#d] argue that

this discrepancy between normal force at interface and in thevhere, in our case,

bulk implies the violation of the conservation law for mo- 1 1\ 1 1
mentum which states th&,, must be a constant. The expla- Ia=1j,q,}, Fa= {@ _9% U( ) }
nation for this problem lies in the fact théd) we omitted T T, T, /T, T
anisotropic stresses in the distribution functiiz., and(b) (49)

we ignored the Knudsen layer. In particular, one can expect . o ]
that the difference between the bulk and interface valued; OSitivity of the entropy production is guaranteed by a linear
Pginterface™ Pz4pule  WoUld vanish exponentially over the ‘phenomenological ansatz”

Knudsen layer—that is, within the distance of few mean free

paths away from the interface—if Knudsen layer effects JA% AneFe.
were accounted for. In our treatment, the Knudsen layer is _ - o
reduced to zero thickness, which results in a jumpHer where the matrixA,g must be positive definite.

In order to discuss the importance of this jump in the The choice of fluxes and forces is not unique, and a linear
momentum flux, we computed the relative error 1transformationX,g can be used to define new fluxes and

=P,y P for random values of the parameters ; 3 1% c g1 ; —
Witﬁzihr?t?rrf]aecie: réilbslg of definition as suggested bypthe Toronta Croes according 1s=InXne. Fs=XgcFc, while o= JaFa
experiments—viz.,w < [0,1], ¥<[0,1], y<[0,1], T,,T, =JgFg. The ppenpmgnologmal laws for the transformed
€[273 K,313 K|, and p,,psxc[0.611 kPa,10 kPla We  quantities ready=AxgFp, With the correspondjng ma}rix of
found an average relative error 6£0.6% based on PO phenomenological coefficients given &BlecACDXDB.
sample calculations. It follows that the error is not signifi- According to the Onsager symmetry relatidd®], there is
car:\tl, ?n?htTUBS thettSimé)'g/ing a?sudmptions are Jtl)JStifigd- one choice of forces and fluxed, andFa, so that the cor-
ote that Barrett and .ilemen S IScussion IS based on thig,gh4nding matrix of phenomenological coefficiefss is
so-called Schrage distribution at the interfge®], which syrrr:metricg.J This in turﬁ implies thatgthe matrix ofpgiaenom-

results from Set.“”@:" in Eq.(38). For this case they po[nt enological coefficients can be diagonalized, that is there is a
out problems with the energy flux as well, which we believe

are due to not having the energy flux in the distribution func-ransformationX,g so that the corresponding fluxes and
tion. Since we use the Chapman-Enskog distribuii@g)  forcesJa,F, are related by a diagonal matrgg=\adag (N0
with the energy flux, this criticism does not apply. summation over index). Only detailed measurements can
reveal the values of the phenomenological coefficidns
In this paper, we are mainly concerned with the models

VI. PHENOMENOLOGICAL THEORIES derived from kinetic theory, and we wish to consider a TIP-
based model mainly for comparison. Therefore we choose
the simplest approach, in which the mathxg is a diagonal
For reasons of comparison, we briefly discuss simple phematrix, so that

A. Thermodynamic of irreversible processes

nomenological laws for the evaporation mass and energy 11

fluxes, which are based on the concepts of thermodynamics j= ,3{9 D hv(_ - —)} (50)

of irreversible processg49]. T T, T T

The balances of energy and entropy at the interface read
. . 1 1
jhi+q=jh, +q,, (46) Q= a(T_U - ;I)- (51)
) g, q B and « are the phenomenological coefficients, which must
o=j(s,—s)+ T T =0, (47) be non-negative to ensure non-negative entropy production.

v |

While this simple model gives results in good agreement to
where q,q, are the nonconvective energy fluxes in liquid the experiments, we wish to emphasize that a detailed study
and vapor, respectively, andis the entropy generation rate of the Toronto experiments based on TIP should account for
due to evaporation or condensation. These two equations cancompletely filled matrixA,g, including the nondiagonal

be combined to give elements, which describe the cross coupling of fluxes and
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forces. As will be seen, the simulation results depend PealT) 2
strongly on the geometry of the experiments. With the simple B=Bsrr=— 5\ o+ (55
, R 7RT
choice above, we can reproduce the general trends of the
experiment, and only an exact simulation of the Ward and Fang23] do not provide an expression for the
experiment—including its geometry—could be used to ex-energy flux. However, in order to completely solve the bal-
actly determine the values of the coefficieMgs. ance laws for evaporation and condensation problems, an
Equation(51) implies that the heat flow from the interface expression for the heat flux is indispensable. The above
into the vapor is solely driven by the temperature differenceanalysis shows that the SRT mass flux is essentially a non-
between liquid and vapor. Since E@6) givesq,=q,+j(h, linear form of Eq.(50), and we suggest that the energy flux
—hy), this also implies that the heat of evaporatjm,—h)) is  (51) can be used as a substitute in the absence of an SRT
absorbed frongin the condensation caser provided by(for ~ energy flux expression. It would be interesting to use SRT to
evaporatioithe liquid. This is plausible, since the heat con-find a nonlinear expression fd®, but this is outside the
ductivity of the liquid is substantially larger than the heatscope of our work.
conductivity of the vapor. Finally we comment that the values of the phenomeno-
We remark also that the heat flux in the bulk vapor is oflogical coefficientsA,g or—in our simplified theory—e and
course given by Fourier’s lad 2), while expressiorf51) is B are not constants, but will depend on the local conditions,
valid only at the interface. in particular on the temperaturds and T, and on the pres-
For equilibrium whereg, =g, andT,=T,, we see that Egs. surep,. Thus, the coefficients must be determined by fitting
(50) and(51) reduce toj=0 andq, =0 (which impliesQ=0),  to measured data. Since the SRT expresgiggr follows

satisfying the equilibrium conditions. from the assumption that all vapor particles condense—i.e., a
o condensation coefficient of.=1—one can introduce the
B. Statistical rate theory condensation coefficient here by settidg 6.Bsgrand fit 6,

Ward and Fang23] used statistical rate theory to find an @nd« to the experiments.
expression for the interface mass flux,

. 9 9 m i 1 VIl. EVAPORATION AND CONDENSATION
J =k ex RT RT, R\T, T, EXPERIMENTS
- hi{1 1 A. Toronto experiments
—exp[j+&——”<———)]}, (52)
RT, RT, R\T, T, To test our models, we shall aim at simulating the experi-

where the two terms are the evaporation and condensatigR€Nts by Ward, Fang, and Staniga-4, who studied liquid

rates, respectively. The coefficiektis given as gxspzr?ﬁg,? ;?Fgrgtrq;?”de”Si”g to its own vapor. Figure 2
W i .

_ 9PsalT) 9= u(m), - Water was supplied through the bottom of the funnel by a

B \27RT =ex RT, [P = Psad TOT syringe pump and withdrawn as vapor from the top of the

chamber. Steady-state evaporation was achieved by adjusting
wherep,=p, is the liquid pressure at the interface. Note thatthe rate of liquid water entry at the inlet and regulating the
we have changed the unisom molecular to mass unitén  vapor pressure by opening and closing a vacuum valve in
these expressions, to adjust them to the other equatipns. line with a vacuum pump.
denotes the specific volume of the liquid. For water in our For condensation, the syringe pump withdrew water at a
range of studyT,;~ 298 K, andv;~ 1073 m®/kg; we estimate constant rate and the water exiting the funnel was cooled by
v(T)/RT =108 m?/N. The difference betweerpf and  a cooling jacket causing the water vapor in the chamber to
Psaf ) is small, thusd=1, and the factor in front of the condense. Steady state was maintained by allowing water to

exponential reduces to evaporate from the test liquid reservoir to replace the water
condensing into the funnel.
:M_ (53) The evaporation and condensation rates were measured
V27RT, based on the syringe pump rate. The vapor pressure was

measured with a mercury manometer. Temperatures in the
liquid and vapor were measured along the center line with
nthermocouples, which were located using a positioning mi-

g?gsss%r;gg]s, the same assumption is present in the SRT Sfometer. The liquid vapor interface position and radius of

. ._curvature were established by observation using a cathetom-
When we assume that the arguments in the exponentia y 9

Il the SRT f be i ved to ai er. Temperatures were measured in the vapor within one to
are smai, the mass flux can be finearized 1o give five mean free paths of the interface. Temperatures in the

2|l g g, 1 1 liquid were measured Withi_n 0.25 mm of the inte.rfag:e.
“"RIT T h, T 1)l (54) The apparatus was radially symmetric. The liquid vapor
! vl interface at the top of the funnel was assumed to be hemi-
This is identical to the mass flux expression of TH) when  spherical. Ward, Fang, and Stanga suggest there is very little
we identify heat transfer with, or through the walls of the funnel.

Herek; is just the first term of the HK mass flu83) which

v

061605-10



MEAN EVAPORATION AND CONDENSATION.... PHYSICAL REVIEW E 70, 061605(2004)

LY T(L,) = Thw Vapor Boundary
v fz
-~
\

Polycarbonate Cylinder To Vapor z
Mercury \[** - Degassing e
Manometer To Vacuum System |  4F125K
( " t:l !! T,(0) Interface
— Y] (=11 70) ‘
TC4 T 1 20 Control Volume
Liquid Liquid
Vapor 4CL2 TCs¢T 1 10
Interface Vapor
- ~ T+—t 0 Ti-Ly) = Ty Liquid Boundary z=-I,
i ~ 7 | <
! N 1-10 FIG. 3. Geometry of the planar setting.
Cooling or = ~ |TC6 4 -20
Heating Jacket 3: 4 N dimensional1D) planar setting. All fluxes and gradients are
ol . 4 .30 assumed to be perpendicular to the liquid vapor interface,
7 el which is a plane. The one-dimensional mass flux per unit
Vs \ 4 -40 areaj and the energy flux per unit are@ are defined as
Test Liquid R e | 4 | Srf]me positive in the positivez direction, the direction of evapora-
& els, ’?{“' t, eszf""f; B —Cooling/Heating Liquid Out  tion. At the interfacez=0, the liquid temperature i and
%;:gngf;;:gn "lqimui dIn Cooling/Heating Liquid In the vapor temperature ig,.
&4 Test Keruld t01-5 mm Stainless Steel Tube The liquid and vapor boundary temperatures are specified
o frgm such that at the liquid boundary-L, the liquid temperature
syringe pump is Ty, and at the vapor boundagrL,, the vapor tempera-

FIG. 2. Setup of the Toronto steady-state evaporation experit!'® 1S Tr,. Furthermore, the pressure in the vammyris
ment[4]. controlled—e.g., by a pump.

Mass and energy flow either when a temperature gradient
is imposed across the systef, # T, or by perturbing the

R ) J S vapor pressur@, away from the saturation pressysg,(T).
7.8°C higher than the liquid interface temperatiiyeWard For equal boundary temperaturBg=Ty, =Ty, @ Vapor pres-

and Stangdd] observedT, >T, also for condensation, but o hejoy the saturation pressyme< Psa( T,) Will cause a
with smaller jumps. They observed the same vapor temperan-et evaporation, while, > p.(T.) will cause a net conden-
ture gradient direction in condensation as for evaporgddn . P ' By~ Psat 1o

Table | gives the values of a typical experiment, whgge sation. i _ .
andT,, are the boundary temperatures of liquid and vappr, . Note that, in accordance W't.h the Toronto expenmen_ts,
andL, are the distance between interface and boundaries fdpter_face and boundaries remain at fixed locations, which
liquid and vapor, and, and T, denote the temperatures of implies that mass is transported over the boundaries.
liquid and vapor directly at the interface. i

As becomes clear from Fig. 2, the experiment takes place C. Balance equations
in a three-dimensional setting. In the following, we shall try e first consider the bulk fluids away from the interface.

to mimic the main features of the experiments by consideringhe balance of masgt2] for one-dimensional steady state
simpler geometries. Since it turned out that geometrical efreduces to

fects play an important role, we consider planar and spherical
one-dimensional settings. Ipvz _
Jz

For evaporation Fang and Waj8,3], T, was as much as

0, (56)

B. One-dimensional planar interface geometry wherez represents the vertical direction; see Fig. 3. Equation

Figure 3 describes the basic geometry of the one¢56) implies that the mass fluk=pv, is constant with posi-

TABLE |. Evaporation experiment E1 data of Waetl al. [4].

Prescribed data Measured data

pp(Pa  Li(mm L,mm  Ty(C) T, (C) T (O T, (0 AT  j(kg/n’s)

593 4.970 18.590 26.060 25.710 -0.4 2.6 3.0 10193
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tion everywhere in the domain. Moreover, since no mass is p,
accumulated at the interface, the mass flow from the liquid o (61)
into the interface must be equal to the mass flow from the
interface to the vapor, so that In particular, the pressure of the vapor directly at the inter-
. face is equal to the pressure prescribed at the boundary.
j = piv; = p,v, = CONSt, (57)
where the index refers to the liquid and the indexrefers to D. Constitutive assumptions

the vapor. The value of directly at the interface must be

computed from the interface conditions presented above, and In (_)rder fto SOIVﬁ tlhe_ bouhndaryf/l value zroblem, constitutive
j has the same constant value throughout the domain.  €duations for enthalpies, heat flux, and saturation pressure

The conservation of energi#2] in differential form for are required. We consider these under the simplifying as-

one-dimensional steady state processes reads sumptions that the liquid is incompressible and the vapor an
ideal gas with constant specific heats. Since the Toronto ex-

P 02 periments were performed with water, we shall consider the
p<u + E)vﬁ p,v,+ 0, | = pFu,. (58) values for water, with exception of the vapor heat capacity:
Since we considered the evaporation and condensation rates

Here, u is the internal energy and,=—« JT/dz is the con- for a mon_atomm gas we neeq to be consistent and consider
the specific heat for monatomic molecules

ductive heat flux. Again, we neglect the kinetic energy term
v?/2, since it will be insignificant relative to the internal 5
energy as long as the evaporation rate is small, which is the ¢, = —R=1.15 k(kg K), 62
case if the evaporation Mach number Mal=/(c,/c,)RT is P (kg k) (62
not larger than 0.1. Moreover, we neglect gravitational ef-

fects, which play no role for this proceggpart from keeping WhereR=0.462 kJ(kg K) is the gas constant of water.
the denser liquid below the vaperand assume isotropic ~ For the liquid we have enthalpy and entropy given by
pressure and no shear forces, so fhatpd;. Under these

Jz

assumptions the one-dimensional steady-state energy balance _ B _ T
i{phv _ Kd_T] -0 where ¢,=4.18 kJ(kg K) is the specific heat andl,
0z Z Tdz ' =298 K is a reference temperature. Note that for an incom-

pressible liquid the enthalpy has an additional teivp,)
Whereh:U-*' p/p denotes SpeCifiC enthalpy Like the balancex(pl—po), WhiCh, however7 can be ignored for smaller de-
of mass this reduces to constant liquid and vapor total energyjations from the reference pressurp,=ps.(298 K)
fluxes, =3.169 kPa due to the large mass dengity
T - Under the assumption that the specific hgatf the vapor
Q=jh - K= ih, - kg = const. (59) Is constant, vapor enthalpy and entropy are given as
z z
. . T p  Ahg
The value ofQ directly at the interface must be computed h,=cy(T-Tg) +Ahy, 5,=¢C,In T Rin —+ T
from the interface conditions presented above, @riths the 0 Po 0
same constant value throughout the domain. Tditieren- (64)
tial) equationg57) and(59) must be solved together with the
interface conditions to find the values of the flujesndQ,  with the enthalpy of vaporizationhy=2442.3 kJ/kg afl,.
as well as the temperature profiles in vapor and liquid, and his choice ensures that at the reference temperature the heat
the temperature jump at the interface. of evaporatiorh,—h,=Ty(s,—s) has its proper value. In gen-
Before we proceed with the solution, we briefly show eral we have for the heat of evaporatidor T,=T,=T at the
that, under our assumptions, pressure gradients can be igverface h,—h=Ahy—(c,—c,)(T-Ty) which gives a reason-
nored. The momentum balance in for steady state in the on@ble approximation for small deviations from the tempera-
dimensional setting readé2] ture T,
The saturation pressupg,(T) is the equilibrium pressure
ap+pvy, of a fluid at temperatur& that exists simultaneously in both
9z =r9, (60) liquid and vapor phases, with the well-known equilibrium
conditions
where we again usef;=pé;. As before, we can ignore
the square of the velocity if the Mach number is small. P=pP, =P =Psad T), T=T, =T}, g/ =0, (65)
Moreover, due to the low density of the vapor, the gravita-
tional force can be ignored as well, so that the pressure in the/ith the above relations for enthalpy and entropy amch
vapor is constant throughout the domain, —Ts the last condition can be solved for saturation pressure,
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- d
psat(T):poeXp{%E[l_%_m(%)} J'C|(T|(Z)—To)"<|%
Ah d
e %)} 60 = 6T, ()~ To) + Al -, T2
=Q. (69)

The saturation pressure computed from this equation
matches well with tabulated data for temperatures betweehhese are two differential equations for the temperature in
273 K and 373 K(despite the error in the specific heat of the liquid and vapor, respectively. Note that, by E¢S7) and
vapo. (59), Q andj are constants. Solution by using the variation of
Finally, we assume that the heat conductivities of liquidparameters and the boundary conditions for temperature
and vapor are constants, which we also chose for water atelds
298 K. Then we havex=0.55W/mK and «,=1.4 74 L
X102 W/mK [43]. Ti@=Te+ (Tp = Tc|)exp<—'> ' (70
The actual values of the coefficients ¢, «, «,, etc., are a
not constant, but depend on the local temperature. We did

some studies for the importance of the temperature depen- _ z-L,
dence for the resulfgl4], which showed that influence of the To(@) =Te, + (Tp, ~ Tay)Jex a, /' (72)
temperature variation is reasonably small, so that the as- .
sumption of constant parameters is well justified. Here, we have introduced the constants
_Q K
E. Reference adjustment Toi= ic, *To, &= ic, (72)

The vapor enthalpy used in our kinetic-theory-basedand
equations differs from the vapor enthal{®p), since both are
based on different reference values. Indeed, in kinetic theory T. = Q +To- Ahg - (73
the enthalpy is given by, =c,T which gives a difference “icy Cp jcp
hulkt_hv:CpTO_AhO'

In order to compensate for this difference, the total energ
flux Q,; as computed from kinetic theory must be correcte
by adding the portion of convective energy flow due to the L
different reference enthalpies, which yields T =T+ (Tp = Tcl)exp<g>, (74)

The temperature$, and T, directly at the interface, where
=0, are

Q=Qq*]j(Ahy=cpTy). (67)

T,=Te +(Ty, - TCv)exp< al:’) i (75)
At first glance it seems that the change of the reference state
influences the expression for the entropy generaddpand By Egs.(72) and(73), the constantd and T, depend on
(48) or the thermodynamic forceg.g)_ However, a closer the values of the interface fluxejsand Q, which in turn are
look on Eq.(47) reveals that the entropy generation ratefunctions of the temperature§ and T, directly at the inter-
depends only on the differensg—s and the nonconvective face, as computed in Secs. IV and V,
fluxesq andq,, and is therefore independent of the chosen - _
reference. Also the thermodynamic forqéd®) are indepen- J=IMT), Q=Q(MT,). (76)
dent from the chosen reference, since they can be written aghe last four equation&4)—«76) therefore form a nonlinear
set of equations for the four constariis T,, j, andQ. The
h four equations were solved simultaneously using the “Find-
FA={SU‘S| - —}- (68)  Root” function in Mathematica 4.1, which uses Newton’s
method with an initial guess to converge to an accuracy of
o o ) six digits [45]. We made initial guesses for the two interface
This in turn implies that the phenomenological laws for thetemperatures and fluxes, based on trial and error and knowl-
fluxes J4={j,q,}, which were given ag\=XAxgFs, are not  gqge of the equilibrium position. If these guesses are suffi-
affected by a change in the reference states for enthalpy @fiently close to the solution, then Newton’s method will con-
entropy. Indeed, only the total energy fl@X is affected, yerge to a solution. There is no guarantee that there is only
since the convective energy transpjirtchanges. one solution, and it is possible that different solutions might
be found with different initial guesses. However, we discount
the possibility of multiple solutions for our system of equa-
tions for two reasons: the solutions we found appear to be
After inserting the relations for enthalpy, Eq€3) and realistic and agree well with measured data, and variation of
(64), the energy balance, E(9), can be written as the initial guesses did not alter the converged solution.

F. Liquid and vapor temperature profiles
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Vapor boundary ~ Q Ahy K

To=7+Tg-—, =- 2" . (81)
Vapor rv J iCp Cp Jifi Cp
The results for the liquid reads
Interface %I’ _ rl)
T(r)=Ty+ (T, = Topexp — |, 82
(1) =Te + (T = Tey) T (82
with the constants
Qi K|
Ta=7"+To, a=——. (83)
o Ji ° Jirizcl

Note that by Eqs(81) and (83), the constantS and T,
depend on the values of the interface fluyeandQ;, which
in turn are functions of the temperaturBsandT, directly at

FIG. 4. Spherical model geometry. the interface, as computed in Secs. IV and V,
Should the initial guess be too far from the solution and =JMT), Q=QM.T,). (84)
sufficient convergence is not achieved, an error message @fs in the planar case, Eq&0)~(84) form a nonlinear set of
nonconvergence is displayed. equations for the four constaris T,, j;, andQ;, which must
be solved numerically.
G. Spherical geometry Here it must be mentioned that we derived the interface

We also consider the evaporation and condensation prof-o>> and energy fluxad0) for the special case of planar
: . por . : P eometry. The results can be used for spherical interfaces as
lem in spherical geometrgsee Fig. 4 since we believe that

the results of the Toronto experiment depend on geometrlong.as surface ter_1$ion effects play no'role. When surface

and can be better described in spherical geometry. fension effects are important, the saturation pressure must be
The boundary conditions are chosen as follows: the quuiacorrected according i(see, e.g., Ref.10])

boundary temperaturdy, is maintained at radius,, the ) 29 v

liquid-vapor interface is at;, and the vapor boundary tem- PealT) = Dsal(T)eXP<r—R—T>, (85

peratureTy, is maintained at,. Moreover, the pressure of the ¢

vapor p, is controlled by pumping vapor in or out at the where is the surface tension coefficient ands the radius

outer boundary, and the location of the interface is kept conef curvature. We estimate the correction for the case of water

stant by supplying or withdrawing liquid af. at T=273 K, which has a surface tension coefficientypf
The temperatures of liquid and vapor interface rand  =7.27x102J/n? [46], and a specific volume ofv

T,, respectively, and mass flux and energy fluxes at the in=10°m3/kg. The correction factor becomes €éxd5

terface are denoted @sandQ,. The radial fluxes and gradi- X 10° m/r.), and this gives a correction above 1%, if the

ents are defined as positive for the outward direction, and weadius of curvature is less than 1X30°m/In 1.01=1.16

assume only radial fluxes, gradients, and jumps. X107 m. For larger radii, as encountered in the Toronto
In steady state, the mass flux through each shell of conexperiments, surface tension effects can be neglected.

stant radius must be the same, so that

jr(nr2=jir?=const. (77) VIIl. SOME SIMPLE ESTIMATES

Also the total energy flux through each shell must be the A. Planar case

same, so that : .
In order to understand the relation between experiment

Q.(r)r?=QyrZ=const. (78)  and equations better, we discuss the experiments and equa-

. ) ) tions together based on simple estimates of the magnitude of

The energy flux per unit area is now given by various terms. In order to have an easier access, we consider
_ jiriz dT(r) the case whera)=Q; i.e., the condensat.ion coefficient is in-

Q =jh+q,= Fh— K ar (79) dependent of the impact energy. In this case the mass flow

through the interface is given by E@2) which can be ma-
Combining the last two equations yields a differential equanipulated to give

tion for temperature which must be solved for the vapor and - 5_
the liquid. For the temperature in the vapor one finds Psad T)\/ = — P, = 2=y ERT j. (86)
T v 2"
r-r, ) .
Ty(r) =Tg, + (Ty, — Tg,)EX , (80)  The measured value of the mass flow is abgutl.
rr
v % 102 kg/(m?s), and for a vapor temperature of 280 K we
with the constants obtain \(7/2)RT,j=0.45 Pa which is three orders of mag-
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nitude smaller than the pressysg=600 Pa. It follows that B. Spherical geometry
the difference betweep, andpsa{T)\T,/T; is very small, as We consider the same problem for the spherical case,

long as the condensation coefficights not too small. Since  \hich seems to better match the geometry of the experiment,
the measurements indicate that the temperature differenGg particular for the funnel. We start by introducing the in-
between vapor and liquid is not more than 1% or 2%, itterface temperatures into the expressions for temperature,

follows that psa(Tj) = p, which implies that the liquid tem- Egs.(80) and(82), which yields, for the gradients,
perature at the interface is close to the saturation temperature

at the prescribed vapor presstie= Ty, (p,). Only when the exp(r - ru>
condensation coefficient is small—e.g4<<0.05—will a dT,(r) Ty -T, rr,a,
marked difference between the two pressures be observed. dr ~ a2 r-r,\’
We proceed to discuss the case for sufficiently large con- 1- em{—”)
densation coefficient, wherg = Tg,(p,), by turning our at- firvdy
tention to the energy balan¢g9). Note that the exponentials
in Egs.(70) and(71) can be reduced to linear functions for exp(m>
small mass flows, where the coefficiertsand a, become dTi(r) _Tp =T, gy
small. Then we can replace the differentials by finite differ- dr ar? =\
ences, and the equation can be rewritten as 1-ex m
i(h,—hy) = %(Tm T)- f(TI “T,). The energy balance directly at the interface can be written as
‘ | -, RO 900
While the differenceh,—h, depends on the local tempera- T P R [

tures of liquid and vapor, it is mainly determined by the o1 with the above expressions, for the gradients,
enthalpy of evaporation, so that we can eth = Ah,.

Moreover, in good agreement with the experiment, we set h— T~ T, 1
Ty, =T, =Ty —T,, which implies that the temperature jump at il ) r-r,
the interface is ignored for this argument, and equal bound- K_ri expl - ra a, -
ary temperatures are assumed. With all assumptions used, we v v
obtain _. T~ T 1
=Jihyi = _ .
Tor — TeadPy) Tor = TeadPy) &2 exp(—u>—1
j:|:ﬁ+ﬂi| bl ~ 'safPy) _ K 1o~ 'salPy . (87) K rray
L, L Ahy L, Ah,

As above, we assume thaf—T, =Ty, —T, and T\=Ts(p,),
With the data from the experiment in Table |, this roughso that
estimate yields 1

. KU
Jithyji = hyp) = [Ty = TsadPy)] P
i
rirvav

a,rl;

2
v

j=12x10°kg/(m?s),

which is surprisingly close to the measured value. Note that

the contribution of the vapor heat conductivity can be ig- _K 1 ]
nored here, since,/L, <k /L,. ar? -
We emphasize that this estimate is independent of the eXp ~ rna ) 1

value for the evaporation coefficient. Our numerical simula-
tions agree well with this value and with the statement thafNext we use the definitions of the coefficiemsanda, in
the condensation coefficient has only little influence on theEds.(81) and(83) and assume, again, that we can expand the
evaporation mass flow. The very weak dependence of th@qunentials since their arguments are reasonably small, to
evaporation mass flow on the condensation coefficient mighgbtain
give an explanation of why measured values of the conden- ki Toy = TeadDy)
sation coefficient assume a wide variety of values. ji= —1_bl__salbfy

A similar estimate can be performed on the phenomeno- L Ahg
logical laws (50) and (52), which would lead to the same \yhere
conclusion—namely, that the liquid interface temperature is
close to the saturation temperatufg,(p,) and that the K n
evaporation mass flux is approximately given by &y). In L o« ri
this case, the evaporation mass flow is not much influenced A= n r * o
by the phenomenological coefficiet which here plays a 1-— =
similar role as the condensation coefficient does in the ki- '
netic theory based models. Again, this agrees with our nuThis expression differs from the estimate for the planar case
merical simulations. (87) by the factorA, which we obtain a# =0.193 by choos-

A, (88

v M
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ing the following values, suggested by the experiment: TABLE II. Evaporation experimental data of Waed al.

=6 mm,r,=r;+L,=24.5 mm, and,=r;—L;=1 mm. In other

words, geometric effects give an approximately 5 times P Th L T L ri Le

smaller evaporation flow than in the planar case. Experiment (P (°C) (mm) (°C) (mm) (mm) (mm)
El 593 26.06 497 25.7 18.59 6.088 0.34

C. Heat flux and interface temperature jump

The above arguments did not use the expression for the. . .
energy fluxQ at the interface, which, however, comes into gives a larger gradient and, therefore, favors larger jumps.
play to determine the temperature juriip—T, at the inter-
face. We shall not try to estimate this temperature difference,
but refer the reader to our numerical solutions presented be- The above arguments show that the temperature of the
low. Nevertheless, we give a qualitative discussion. First weiquid is close to the saturation temperat(ifg, at the pre-
recall from the discussion above that the evaporation masscribed pressure in the vapgp and the evaporation rate
flux is largely independent of the condensation coefficientslepends predominantly on the heat transferred through the
(or phenomenological coefficientdVe can rewrite Eq¥59)  liquid to the interface, where liquid evaporates.
and(76) as The amount of heat flowing into the interface depends on

the temperature of the liquid at the interface, the geometry of
(89) the experimental apparatus, and the temperatures at the
v,i boundaries of the apparatus. Accordingly, one can expect a
good match between theory and experiment only if the simu-
lation of the experiment includes an accurate setup of the
experiment. While this is outside the scope of the present
Eq. (86), so that Eq(89) serves to computd,. paper, we _continue to.discuss the Toronto experiments on the
In case of spherical symmetry, one will find the gradientP@se Of this observation.

(dT/dr)|,; instead, but the argument will be the same, and Since in the_To_ronto experiments the evaporation rate is
v low and the liquid enthalpy small, this heat is provided

D. Heat leaks and geometry

dT

Q(Tl’TU) - J(Terv)hv(Tv) =T Ky (d_z)

which relates the temperatufeto the temperatur@, and its
gradient at the interface(dT/dr)|,; in an implicit manner.
Note that the liquid interface temperatufe follows from

v,i v,i

the left-hand side of the equation will remain unchanged a: .
well. To estimate the gradients, we use the same approxim%rough nonconvective heat t.ralnsfer. Therefore we can say
tions as in the above subsections to find at the evaporation rate is limited through the conductive
heat transfer in the liquid. The measured evaporation rate is
dT Too =Ty dT Too— Ty L, jexperiment= 1.017X 103 kg/(m?s) and the value predicted
dz = L, \ar = L 1 ) for the planar casg pjana= 1.2X 1072 kg/(m? s), is relatively
close to the measured value. However, the value predicted
(90 for the actual—spherical—funnel geometiygnericar 2-34
where we have also useg=r;+L,. With the experimental X 10™* kg/(m?s), is far too low. The dominant factor which
data used at the end of the last sectiog=6 mm, L,  gives the reduced evaporation rate in the spherical case is the
=18.5 mm follows that the gradient of the vapor tempera- second term in\, Eq.(88), which is due to the heat transfer
ture in spherical geometry is about 4 times larger then thén the liquid.
gradient in planar geometry. This is a remarkable change The above argument assumes that the funnel walls are
which has marked influence on the size of the temperaturgdiabatic, so that all heat is drawn from the funnel inlet,

jump, as will be shown below. where the temperature is maintained’gt As this heat flows
For the TIP model, E¢(89) reduces to through the liquid in the funnel, it is distributed over the
larger and larger cross sections of the funnel, and thus less
a(i _ l) ——x MF heat can be provided per unit area of the interface.
T, T L, ’ Since the observed evaporation flux is larger than pre-

dicted, we must conclude that the funnel walls are not adia-
batic, so that a substantial amount of h@gatough to give an
approximately 5 times larger evaporation patxeeps in
al, 1 through the funnel walls.

(1 e F) (T,=T) =Ty~ T. In this context we recall that Ward and Stanga suggest that

v iltv the temperature gradient in the liquid is constgfjt which
This shows thafl,>T, as long asT,,—T,>0; both condi- would be expected in the planar case. Note, however, that the
tions are observed in the experiment. Note that the temperdiquid temperature measurements are concentrated near the
ture jump in TIP, as estimated above, is determined only bynterface, with only one measurement at the liquid boundary.
the phenomenological law fd (or q,) at the interface and Additional measurement points in the liquid region would be
is independent of the evaporation rate necessary to understand the transport in the liquid better and
The obvious conclusion of this section is th{at a large  to confirm the constant liquid temperature gradient.

temperature gradient of the vapor at the interface yields a In an effort to model the experiment in a simple, but suf-
larger temperature jump and théb) spherical geometry ficiently accurate manner, we also model the liquid according

wherel'=1 in planar geometry and=1+L,/r; in spherical
geometry. This can be written as
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TABLE lll. Geometry dependent simulation results, SRT.
Model T,(°C) T,(°C) j[kg/(m?9)]
Measured -0.4 2.6 1.0710°3
SRT planar-planar -0.33 0.0098 121073
SRT planar-spherical -0.33 2.67 129073
SRT spherical-spherical -0.34 3.26 247074

to the planar case and the vapor according to the equatior
for the spherical case. To combine a planar description of th
liquid with a spherical description of the liquid, it is neces- -0.005 0 0.005 0.01 0.015

sary to choose a common coordinate system. We chose .. z (m)

frame where the interface is at0, so that have at the in- FIG. 5. Temperature profiles for SRT simulations witk 1.37
terface,z=0 andr=r;. This impliesz=r-r;, r,=r;+L,, and X 10 (W K)/m?. Planar-planar geometrydashed ling planar-
rn=ri—-L,. spherical geometrysolid line), spherical-spherical geomet(dot-

ted ling), and experimental resultslots.

E. Constant temperature zone in liquid . .
ing the parameterg, o, andy. Other models based on ki-

‘Ward and Stang#d] observe a small isothermal zone of petic theory are not considered here, but were tested as well.
thicknessL. in the liquid adjacent to the interface, which The results showed in particular that there was no marked
they suggest could be due to surface tension driveRjifference between the models based on the Chapman-
Marangoni-Benard convection or energy partitioning duringgnskog distribution and those based on the Maxwellian, Egs.
the phase change process. Our simplified models do not gl»6) and(28). Since this refers only to the particular setting
low for either of these phenomena and thus do not predict gf the Toronto experiments, we do not wish to draw further
liquid isothermal zone. In order to be able to compare witheonclusions from this result.
the experiments, we artificially introduced a small isothermal  The SRT model has only one adjustable parameter, which
zone into the simulations. The only effect of this is that thejg the phenomenological coefficieat For the data in the

effective liquid thickness becomes a bit smaller—ilgeii  experiment the nonlinear expressi¢h2) yields the same

=L-Le. results as the linear expressigv), which agrees with the
general phenomenological la@0). Moreover, as our esti-
IX. MODELING RESULTS mates in Sec. VIl showed, the paramegeim the phenom-

enological models has no marked influence on the results,

A. Models used and setup and this finding was supported by numerical tests. For space

With the aforementioned considerations, we present théeasons, we present only solutions which y&eBsgr as
evaporation results using the constant liquid temperaturgiven in Eq.(55).
zone and pure|y p|anar’ pure|y SphericaL and mixed p|anar Table Il shows the controlled data for one of the experi-
and spherical geometries. These geometries differ considefents performed by Ward and Stange47]; other experi-
ably from the geometry of the experiments, and therefore théents were similar. We chose the parameters in the
reader will not expect perfect agreement between simulationdodels—i.e., the coefficients, w, y, and a—where appli-
and experimental data. However, this study allows the undetc@ble so that the simulations stand in reasonable agreement
standing of the basic trends and, in particular, the strongVith the measurements.
importance of geometry on the outcome.

The results depend on the choice of models for the inter-
face expressions for mass and energy flow, and we shall use
the following models for simulations. In this case, we only need to specify the phenomenologi-

CE: A classical kinetic theory model, based on thecal coefficient for heat transfer, which we choseassl.37
Chapman-Enskog expansion with condensation coefficienx 10° (W K)/m2. Table Il shows the interface temperatures
0.= =1, Eqgs.(41), the standard Schrage modé]. and the mass floyy for the different geometries in compari-

CEVEL: A kinetic theory model, based on the Chapman-son to the experiment. As expected and discussed above, the
Enskog expansion and the velocity dependent condensatigiianar geometry for the liquid gives a reasonable mass flow
coefficient (15), with variable accommodation coefficient, not to far from the experimental value, while in spherical
Egs. (40). geometry of the liquid the heat flow to the interface is lim-

SRT: A phenomenological model, comprised of the SRTited, which results in a low evaporation rate. The geometry
mass flow(52) and(53) and the phenomenological lais1) has a strong influence on the temperature difference between
for the heat flux. vapor and liquid at the interface, which is much larger in

The CE model includes no free parameters, while thecase of spherical geometry for the vapor than in the planar
CEVEL model can be fitted to experimental data by adjustcase.

B. SRT simulations
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TABLE IV. Geometry dependent simulation results, CE. TABLE V. Geometry dependent simulation results, CEVEL,
with 4#=0.05, w=y=1.
Model T,(°C) T,(°C)  j[kg/(m?9)] -
Measured -0.4 2.6 10371073 Model T (O T, (°C) jlkg/(ms)]
CE planar-planar -0.33 -0.39 1.%710°3 Measured -0.4 26  1.0w10°
CE planar-spherical -0.33 -0.35 1.8a0°3 CEVEL planar and planar 0.6172 0.6165 1207
CE spherical-spherical -0.34 -0.29 28107 CEVEL planar and spherical 0.63 3.12 125073

CEVEL spherical and spherical -0.15 3.41 24804

Figure 5 shows the temperature profiles for the three

cases. Of particular importance is the large temperature gra- The temperature jump at the interface is positive for
dient in the vapor at the interface for the Spherical CaseSspherica| vapor geometry and is as |arge as measured. Note
which leads to the larger temperature jump. Note that thehat a small negative temperature jump is predicted in purely
curvature of the temperature profiles agrees with the exper'wanar geometry.

ment in the spherical case, whereas the planar case gives |n order to better understand the influence of the coeffi-
opposite curvature. Finally we note that in all cases the liquidsients, we study the case=0.1 andw=y=1; that is, we
temperature is very close to the saturation temperaturgssume that a larger portion of vapor particles will condense.
TsalPy), @s measured. The results in Table VI indicate that this leads to a lower

Altogether we can state that the SRT mo¢#) and(53)  liquid temperature, which is now closer to the saturation
with the TIP expression for the interface energy flux, Ed.temperaturd,,(p,), and to a smaller temperature jump. The
(51), gives a good description of the Toronto evaporationeyaporation rate is almost not affected.
experiments. Next we study the influence of the accommodation coef-
ficient, by considering/=0.05, =1, and y=0; see Table
VII. We see that this change leaves the liquid temperature
unaffected in comparison to the first case, Table V but re-

The classical Schrage modédl|, Egs.(41), has no adjust- duces the temperature jump. Thus we can conclude that an
able coefficients, and Table IV gives the results for interfaceaccommodation coefficient close to unity will favor a larger
temperature and mass flow. The liquid temperature is agaitemperature jump. This makes sense, since a small accom-
equal to the saturation temperatufg,(p,), and the mass modation coefficient implies many thermalizing collisions
flux j has almost the same values as in the SRT case. This kgtween vapor and liquid and, hence, a better exchange of
expected since we have shown that the evaporation rate denergy that supports equilibration of temperatures.
pends mostly on the heat transferred through the liquid, Next we consider a case where all vapor particles con-
which is independent of the model fpiat the interface. The densew =1 andw=1 (note thaty plays no role in this cage
vapor temperature at the liquid is very close to the liquid(Table VIIl). Now the liquid temperature is equal to the satu-
temperature and slightly lower in the planar cases, while theation temperatur@,.{p,), but the temperature jump is nega-
vapor has a higher temperature in the purely spherical casgve (and small for planar liquid geometry and positive but
In all cases the temperature jump is small and far from thayery small for the purely spherical case. The results are close
obtained in the experiments. to those of the CE modéTable V).

Altogether it follows that the classical Schrage model can-
not describe the experiment with sufficient accuracy, since it
does not give an interface temperature jump of sufficien
magnitude.

C. CE model

25

20

D. CEVEL model ~ 15
O

With models based on the velocity dependent condensé_
tion coefficient we can vary the parametefsw, andyto & 10
obtain agreement with the experiments. We first show result
for a case with relatively low condensation coefficient, 5
strong velocity dependence, and purely specular reflection ¢
noncondensing particles, whege=0.05 andw=vy=1. Inter-
face temperatures and mass flow are given in Table V. Figur
6 shows the corresponding temperature curves. 2 (m)

Again, the evaporation rate is very close to the SRT case, _ _ _ _
for the same reasons as discussed for the CE model. Due tg 'G- 6. Temperature profiles for CEVEL simulations wigh
the relatively small condensation coefficient, the liquid tem-~2-0% andw=y=1, Plgna_r-planar ggomet(yia§hed ling; planar-
perature is now about 1 °C above the saturation temperatuf@re'ical geometrysolid line), spherical-spherical geometrgiot-

. . . : ted ling, and experimental resultslots.
TsalP,), in agreement with our discussion of H&6).

-0.005 0 0.005 0.01 0.015
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TABLE VI. Geometry dependent simulation results, CEVEL, = TABLE VIIl. Geometry dependent simulation results,
with ¢=0.1, o=y=1. Yy=w=1.
Model T,(°C) T,(°C) j[kg/(m?9)] Model T,(°C) T,(°C) j [kg/(m?s)]
Measured -0.4 2.6 1.0710°3 Measured -0.4 2.6 1.02710°3
CEVEL planar-planar 0.14 -0.038 1.25810°3 CEVEL planar-planar -0.31 --0.667 1.2710°3
CEVEL planar-spherical 0.15 1.34 1.270°3 CEVEL planar-spherical -0.31 -0.57 1.800°3
CEVEL spherical-spherical -0.24 1.62 2480 CEVEL spherical-spherical -0.33 -0.27 25104

Finally, we ask for the influence of the coefficien;  Sation rates, which now depend on parameters that describe

which determines the importance of the impact energy on th&h€ velocity dependent particle condensation probability.
condensation probability. For this, we considgr0.1, » We also briefly rewewgd basic expressions for the inter-
=0.5, andy=1. From the results in Table IX follows that a face fluxes that were derived by the methods of thermody-
smaller value ofw leads not only to a smaller temperature N@mics of irreversible processes and statistical rate theory.
jump, but also to a different sign: for planar liquid geometry ~ Then we considered these models for evaporation in
the temperature jump is negative, while it becomes positivéimple geometries, in particular 1D planar and 1D spherical
in the purely spherical case. transport, in order to desc_rlbe and understand the experi-
Summarizing we can conclude that a kinetic theory modeMents recently performed in Toronto by Ward, Fang, and
with velocity dependent condensation coefficient can giveStanga. _ _ _ _ _
large and positive temperature jumps between vapor and lig- A Particularly interesting feature in the experiments is the
uid at the interface. However, large temperature jumps reobservation of a distinct temperature jump at the interface
quire that only a small portion of vapor molecules that hit thePetween vapor and liquid, where the vapor temperature is
interface condensgsmall values ofy), that those particles higher than 'Fhe liquid temperature. Stapdard kinetic theqry
that do not condense do not exchange much energy with tH80dels predict only a very small negative temperature dif-
liquid (y close to unity, and that the condensation probabil- ference, where the liquid has a slightly higher temperature.
ity for fast particles be much higher than that for slow par- Our cqn3|derat|ons revealed that the direction of the tem-
ticles (o close to unity. perature Jump.depends on geometry, and we presented cases
Moreover, the comparison of different geometries showdvhere even with the standard Schrage ma@#) the vapor
that size and sign of the temperature jump depend strongl{gmperature was higher. _T_he inclusion of the velt_)C|ty depen-
on the geometry. dent condensation coefficient leads to more refined models
In particular we note that for the model presented here 4CEVEL), with several parameters that can be adjusted to
large temperature jump is accompanied by a liquid interfac&'V€ muCh larger interface temperature jumps, as observed in
temperature above the saturation temperafyggp,) which the experiments.

does not agree well with experiments, where the liquid inter- The coefficients in the phenomenological models can also
face is found at the saturation temperature. be adjusted to yield the observed temperature jumps. Here

we used only very simple models, which ignored the cross
coupling of thermodynamic fluxes and forces. While these
simple models were sufficient to reproduce the general
_ o _ trends, it is likely that cross effects must be considered to
In this paper, we used kinetic theory arguments to derivg,chjeve a perfect modeling of the experiments. However, this
expressions for the mass and energy fluxes at liquid-vapqg; require an exact simulation of the experiment, including
interfaces in nonequilibrium. In particular we based the calyg geometry, and therefore this question was not further con-
culations on a condensation coefficient that depends on thgyered in the present work.
impact energy of the condensing particle normal tq the ir_lter- A simple analysis, which is supported by our numerical
face, as suggested from molecular dynamics simulationgegyts, showed that, at least for the conditions in the Toronto

This leads to a generalization of the well-known Hertz-gyperiments, the evaporation and condensation mass flux is
Knudsen and Schrage laws for the evaporation and conderrhosﬂy driven by energy flow, while the equation for the

X. CONCLUSIONS

TABLE VII. Geometry dependent simulation results, CEVEL, TABLE IX. Geometry dependent simulation results=0.1, @

with =0.05,w=1, y=0. =0.5,y=1.

Model T,(°C) T,(°C) j[kg/(m?9)] Model T,(°C) T, (°C)
Measured -0.4 2.6 1.0710°3 Measured -0.4 2.6
CEVEL planar-planar 0.6172  0.6852 123073 CEVEL planar-planar 0.0022 -1.19
CEVEL planar-spherical 0.63 0.75 1.250°3 CEVEL planar-spherical -0.0082 -0.195
CEVEL spherical-spherical -0.14  -0.068 24504 CEVEL spherical-spherical -0.296 0.83
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mass flow essentially determines the liquid interface tem- To model water vapor more realistically, the kinetic
perature(Sec. 1X). The latter is almost independent of the theory treatment must be extended to incorporate the internal
coefficients that appear in the interface mass flow expressiogiegrees of freedom of the molecules. This was beyond the
which implies that these can have almost arbitrary values angCope of this paper, which aimed at first showing that veloc-
still give results in very good agreement with experimentaly, jependent condensation coefficients allow to better model
data. This is the most likely reason why a wide variety Ofexperiments than constant condensation coefficients.

values for these coefficients can be found in the literature. our discussion shows that details of the aeometries of the
The interface temperature jump depends on the expres- 9

sion for the interface energy flux, and the choice of Ioaram_experimental apparatus and heat leaks have significant influ-

eters in these is crucial for a good agreement with the ex€Nce ON the experimental findings. A thorough understanding

periments. This is of particular importance for the SRTOf experiments—e.g., the Toronto evaporation and condensa-
model: SRT gives an interesting and well-founded exprestion €xperiments—can only be achieved by accurately mod-
sion for the interface mass flux, but does not provide arfling the experiments in all detail.
expression for the interface energy flow. It would be very
interesting to use SRT arguments to find such an expression.

We do not claim that our simulations of the experiments ACKNOWLEDGMENT
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we modeled the water vapor as a monatomic ideal gas and This research was supported by the Natural Sciences and
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