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A generalization of the classical Hertz-Knudsen and Schrage laws for the evaporation mass and energy
fluxes at a liquid-vapor interface is derived from kinetic theory and a simple model for a velocity dependent
condensation coefficient. These expressions, as well as the classical laws and simple phenomenological ex-
pressions, are then considered for the simulation of recent experiments[G. Fang and C. A. Ward, Phys. Rev. E
59, 419 (1999)]. It is shown that mean condensation and evaporation coefficients in the mass flow influence
the results only if they are small compared to unity and that the expression for evaporation mass flow
determines the temperature of the liquid. Moreover, it is shown that the expression for evaporation energy flow
plays the leading role in determining the interface temperature jump, which can be obtained in good agreement
with the experiment from the generalized kinetic theory model and phenomenological approaches, but not from
the classical kinetic-theory-based Hertz-Knudsen and Schrage laws. Analytical estimates show that the inter-
face temperature jump depends strongly on the temperature gradient of the vapor just in front of the interface,
which explains why much larger temperature jumps are observed in spherical geometry and the experiments as
compared to planar settings.
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I. INTRODUCTION

While evaporation and condensation phenomena have
been a subject of research and debate for more than
100 years, the mechanism of transfer across a phase bound-
ary was not a great focus of research because it was consid-
ered adequate to assume that the liquid-vapor interface is
nearly at complete equilibrium. In particular this led to the
assumption that at the interface both phases have the same
temperature, even outside of equilibrium. See Ref.[1] for a
good overview of the history of this topic.

Just recently, a series of steady-state evaporation and con-
densation experiments performed at the University of Tor-
onto by Ward, Fang, and Stanga[2–4] exhibited large posi-
tive temperature jumps of up toTv−Tl .7.8 °C across the
interface, something not previously observed. These experi-
ments, in the following referred to as “Toronto experiments,”
triggered new interest in the field, including the results pre-
sented here.

The main quantity of interest in evaporation and conden-
sation problems is the evaporation ratej , which is defined as
positive in the case of evaporation and is negative in the case
of condensation. In many theories its computation involves
mean evaporation and condensation coefficients, which are,
loosely speaking, the probabilities for a liquid particle to
evaporate and for a vapor particle to condense. There are two
main roads to computej (or the coefficients): either by
means of kinetic-theory-based arguments or by using ideas
of thermodynamics of irreversible processes(TIP).

Our subsequent analysis will show that knowledge ofj is
not sufficient to successfully simulate, and understand,

evaporation and condensation, but that an expression for the
evaporation energy fluxQ is indispensable. AlsoQ is deter-
mined through mean evaporation and condensation coeffi-
cients, which may, but must not necessarily, have the same
values as the mean coefficients appearing inj .

Expressions forj andQ are derived in kinetic theory by
means of approximate solutions of the Boltzmann equation,
in particular those obtained by the Chapman-Enskog method,
and require microscopic condensation probabilities as an in-
put to compute mean values. In most of the literature, the
microscopic condensation probability is assumed to be con-
stant[5–11], but molecular dynamic(MD) simulations show
that it indeed depends on the impact energy of a vapor par-
ticle that hits the liquid as well as on the temperatureTl of
the liquid surface. See Ref.[12] for an overview on molecu-
lar dynamic approaches and[13–16] for more detailed mo-
lecular dynamic simulations.

In Refs.[16,17] the authors propose a condensation coef-
ficient of the form

uc = cF1 − vexpS− Emol

RTl
DG , s1d

whereEmol is the translational molecular energy in the direc-
tion normal to the surface,R is the gas constant, andc andv
are constants that describe the details of the condensation
probability. In Ref.[16] it is also observed that most vapor
molecules that do not condense exchange energy with the
liquid and are thermalized.

The energy dependent coefficient(1) was used in direct
simulation Monte Carlo(DSMC) simulations[18], but to our
knowledge it has not been used so far to compute expres-
sions for the mass and energy fluxes through the interface,j
andQ. This task will form the first part of this paper, where*Electronic address: struchtr@me.uvic.ca
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we use expression(1) together with approximate velocity
distribution functions at the interface to compute and discuss
expressions forj andQ. Our expressions turn out to be more
general than expressions normally obtained from kinetic
theory, but reduce to classical models—e.g., the classical
Hertz-Knudsen expressions[5,6] or the Schrage correction
[1] to these—for certain choices of the parameters.

As we proceed, it will be seen that the values of the co-
efficientsc andv have a marked influence on the tempera-
ture jump at the interface. In particular they can be chosen
such that the temperature jump is positive, while the classical
models, which assume a constant coefficient(i.e.,v=0), will
in most cases lead to small negative jumps.

After discussing kinetic-theory-based expressions forQ
and j we briefly discuss simple models based on TIP
[19–22]. These models find expressions forj and Q by as-
suming linear laws between “thermodynamic fluxes” and
“thermodynamic forces” that guarantee positive entropy gen-
eration at the interface.

Ward and Fang[23,24] suggested statistical rate theory
(SRT) as an alternative to kinetic theory and TIP, and we
shall discuss their expression forj in relation to TIP. Unfor-
tunately, SRT does not provide an expression for the energy
flux Q, and in order to complete the SRT model, we decided
to employ the TIP expression forQ.

A popular configuration for studying one-dimensional
evaporation and condensation phenomena is the parallel sur-
face geometry[7,8,21,25–28], a topic that goes beyond the
scope of this paper and will not be further discussed. Another
interesting recent approach to the topic is the Van der Waals
square gradient model[29–31], which also shall not be dis-
cussed further.

After discussing the theory behind the expressions forj
andQ, we next consider simple one-dimensional models in
planar, spherical, and mixed planar and spherical geometries,
which approximate the conditions of the Toronto experi-
ments[2–4] where only the boundary temperatures of liquid
and vapor and the pressure in the vapor were prescribed. The
balances of mass and energy are solved for the liquid and
vapor temperature profiles. The complete solution requires
the expressions for mass and energy flux across the interface,
developed from kinetic theory, SRT, and TIP. The analysis is
performed for relatively slow evaporation and condensation.
The equations are solved to yield the mass and energy fluxes
per unit area and the liquid and vapor temperature profiles.

Before presenting some numerical solutions, we do a
simple analysis of the results based on the order of magni-
tude of certain terms in the solutions and equations. The
findings are then supported by the numerical solutions. In
particular we shall show that, at least for the conditions of
the Toronto experiment, the following holds.

(i) The condensation and evaporation coefficients in the
mass flowj influence the results only if they are very small
compared to unity.

(ii ) The expression for mass flowj determines the tem-
perature of the liquid, which is close to the saturation tem-
peratureTsatspvd wherepv is the pressure prescribed in the
vapor.

(iii ) The expression for energy flowQ plays the leading
role in determining the interface temperature jump, which

can be obtained in good agreement to the experiment by
adjusting the parametersc, v in Eq. (1) or the phenomeno-
logical coefficients in the TIP-based models.

(iv) The interface temperature jump depends strongly on
the temperature gradient of the vapor at the interface.

(v) The last finding explains why much larger temperature
jumps are observed in spherical geometry, as compared to
planar settings.

(vi) And, finally, the Toronto experiment is better de-
scribed by a mixed planar-spherical geometry, which might
explain the large temperature jump observed.

The remainder of the paper is organized as follows.
Section II recalls some basic results from kinetic theory,

and Sec. III discusses the vapor distribution function at the
interface and introduces evaporation and condensation coef-
ficients. This forms the base of the derivations of the gener-
alized Hertz-Knudsen and Schrage laws for evaporation
mass and energy fluxes in Secs. IV and V. Phenomenological
theories for evaporation mass and energy fluxes, including
those based on statistical rate theory, are briefly presented in
Sec. VI. Section VII discusses the experimental setup and the
solution of the governing equations for simple geometries
that mimic the experiment. The analytical solutions are then
considered in Sec. VIII in an approximative manner to esti-
mate the importance of various terms in the equations. The
findings there are then supported by numerical solutions in
Sec. IX. Finally we briefly review our findings and present
the conclusions.

II. VELOCITY DISTRIBUTION FUNCTION AND
MOMENTS

In kinetic theory, the behavior of a system of molecules is
described by the distribution functionfsci ,xi ,td, which is de-
fined such thatfsci ,xi ,tddcdx is the number of molecules
with velocities in hc,c+dcj and positions inhx ,x+dxj, at
time t. Knowledge of the distribution function allows the
computation of bulk properties such as mass density

r = mE
−`

`

fdc, s2d

momentum density

rvi =E
−`

`

mci fdc, s3d

internal energy

ru =
3

2
p =

3

2
rRT=E

−`

` m

2
C2fdc, s4d

pressure tensor

pij =E
−`

`

mCiCj fdc, s5d

and heat flux
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qi =E
−`

` m

2
C2Ci fdc. s6d

Here,m denotes the molecular mass,R=k/m is the gas con-
stant wherek denotes Boltzmann’s constant,Ci =ci −vi is the
peculiar velocity,vi is the mean velocity, andp denotes the
pressure which is related to temperature and density by the
ideal gas lawp=rRT.

In the following, we shall be mostly interested in the
fluxes of mass and energy through a vapor-liquid interface
(in normal direction). When the normal of the interface
points into thex3=z direction, these are defined as

j =E
−`

`

mcz fdc s7d

and

Q =E
−`

` m

2
czc

2fdc, s8d

respectively.
The velocity distributionf is determined by the Boltz-

mann equation[32]

]f

]t
+ ci

]f

]xi
= Ssfd, s9d

whereSsfd denotes the collision term, which describes the
change of the velocity distribution due to intermolecular col-
lisions. The balance laws for mass, momentum, and energy,
as well as the H theorem, can be derived by suitable averag-
ing of the Boltzmann equation over the microscopic velocity
[32,33].

In equilibrium, the velocity distribution function does not
change with time or location and the collision term must
vanish, which implies that the equilibrium distribution is the
Maxwellian [32]

fMsp,T,Cd =
p

mRT

1
Î2pRT3

expS−
C2

2RT
D . s10d

Nonequilibrium solutions of the Boltzmann equation are
considerably more complex. The Boltzmann equation can be
solved by computer either directly or by DSMC simulations
[34], both of which are computationally expensive.

The Chapman-Enskog(CE) method expands the distribu-
tion function about the Knudsen numberNKn. The Knudsen
number is the ratio of the mean distance a molecule travels
between collisions(mean free path) to a macroscopic length
associated with the vapor. The first-order CE expansion of
the Boltzmann equation gives the distribution function as
[35]

fCE = fMX1 −
2

5

k

Rp
CkS C2

2RT2 −
5

2T
D ]T

]xk
+

1

5

k

Rp

CkCi

RT

3S ]vi

]xk
+

]vk

]xi
−

2

3

]vr

]xr
dikDC , s11d

wherek is the thermal conductivity. In particular this distri-
bution gives the laws of Fourier,

qi = − k
]T

]xi
, s12d

and Navier and Stokes,

pik = pdik + mS ]vi

]xk
+

]vk

]xi
−

2

3

]vr

]xr
dikD , s13d

wherem= 4
15k /R is the viscosity. In this paper we shall ig-

nore shear stresses, so thatpik=pdik; then, the CE distribu-
tion reduces to

fCE = fMX1 −
2

5

k

Rp
CkS C2

2RT2 −
5

2T
D ]T

]xk
C . s14d

For equilibrium conditions, in particular vanishing tempera-
ture gradient]T/]xk=0, the CE distribution reduces to the
Maxwellian.

III. DISTRIBUTION FUNCTION AT THE INTERFACE

When a particle in the vapor phase hits the liquid-vapor
interface, it will undergo an interaction with the liquid par-
ticles at the interface. Depending on the microscopic condi-
tions for the particular interaction, the particle can be ab-
sorbed by the liquid—i.e., it condenses—or it might be
reflected back into the vapor.

The energy of liquid particles at the interface fluctuates
due to stochastic interactions between particles. Occasionally
a particle gains enough energy to leave into the vapor—the
particle is evaporated.

Obviously, evaporation and condensation processes will
influence the distribution function at the interface and deter-
mine the rates of mass and energy transfer over the interface
in nonequilibrium situations.

In a somewhat simplified model, condensation and evapo-
ration processes can be described by several coefficients,
which we shall discuss now.

A. Condensation coefficient

The condensation coefficientuc is defined as the ratio of
incident molecules sorbed by the surface to those which ac-
tually hit the surface. Molecules which do not condense are
reflected back into the vapor. Accordingly,uc=1 if all inci-
dent molecules condense anduc=0 if all molecules are re-
flected. Early theories of condensation, in particular the clas-
sical Hertz-Knudsen theory[5,6], assume a condensation
coefficientuc=1, and that assumption is still used regularly;
e.g., see Ref.[11].

Molecular dynamic simulations suggest that the conden-
sation coefficient depends on the energy of the incident mol-
ecules and the interface surface temperature[14–18]. An in-
cident molecule with high energy can penetrate more deeply
into the liquid phase, where it will undergo many interactions
with liquid molecules; this increases its likelihood of con-
densation, since the condensing particle will dissipate energy
to the liquid[16]. A higher surface temperature increases the
energy of the surface molecules and thus the likelihood of
incident molecules having collisions directly at the surface.
This reduces incident molecule penetration, which results in

MEAN EVAPORATION AND CONDENSATION… PHYSICAL REVIEW E 70, 061605(2004)

061605-3



a smaller condensation coefficient. To accommodate this be-
havior, Tsurutaet al. suggested that the condensation coeffi-
cient is of the form[16]

uc = cF1 − v expS − cz
2

2RTl
DG , s15d

where c and v are constants,Tl is the temperature of the
liquid at the interface, andcz is the particle velocity with
respect to the interface, normal to the interface. We shall use
this expression below to compute average condensation co-
efficients. Note that forv=0 the condensation coefficient is a
constant.

Due to its definition, the condensation coefficient must lie
between 0 and 1; this must also be true for Eq.(15). If cz

2

→`, uc=c so that 0øcø1. For cz
2=0, uc=cs1−vd; this

requiresvø1 and also impliesvù1−1/c. Moreover, since
the condensation probability of a molecule should increase
with its energymcz

2 and decrease with higher surface tem-
peratureTl, v should be positive, so thatv is restricted to
0øvø1. Tsurutaet al. [16] report from MD simulations for
argon thatc andv have values of 0.971–0.685 and 0.086–
0.554, respectively.

B. Accommodation coefficient

With ucÞ1, there is a portion of particles which hit the
liquid interface and then bounce back into the vapor. In gen-
eral, the rebounding molecules will have exchanged energy
and momentum with the liquid particles, and some knowl-
edge about the reflection mechanism is required. We shall
adopt the classical Maxwell model, which assumes that mol-
ecules interact with the interface in two basic mechanisms:
specular and diffuse reflection.

Specular reflection describes molecules that maintain their
energy and do not react thermally with the surface. The
specularly reflected molecules maintain the distribution of
the incident molecules, except with mirrored velocities.

Diffuse reflection describes molecules which do not con-
serve their energy and undergo a complete thermal interac-
tion with the surface. Diffusely reflected molecules leave in a
Maxwellian distributionfMsp* ,Tl ,Cd which is determined by
the liquid temperatureTl and an effective pressurep* , which

is determined to guarantee the conservation of mass.
To distinguish between specular and diffuse reflection, the

accommodation coefficientg is introduced, withg=1 for
pure specular reflection andg=0 for pure diffuse reflection.

Figure 1 shows the distribution functions of particles trav-
eling towards or away from the interface; the indicesl andv
denote properties of liquid and vapor, respectively. From the
figure it follows that the condition for conservation of par-
ticles in reflection that determinesp* read

E
czù0

czgs1 − ucdfv-refspv,Tvddc +E
czù0

czs1 − gds1 − ucd

3fMsp* ,Tlddc +E
czø0

czs1 − ucdfvspv,Tvddc = 0. s16d

C. Evaporation coefficient

The evaporation coefficientue is a measure of how many
molecules escape from the surface into the vapor. Several
definitions are possible, and here we define the evaporation
coefficient such that the distribution of the evaporating mol-
ecules is given byfevap=uefMspevap,Tl ,Cd wherepevap is an
effective pressure of the evaporating molecules andTl is the
liquid temperature. Note thatue is not a constant, but can
depend on physical variables of the system, such asTl, Tv, C,
etc. We proceed by discussing the functionue as well as the
pressurepevap.

From Fig. 1 follows the distribution of particles directly at
the interface as

fcz.0 = uefMspevap,Tld + gs1 − ucdfv-refspv,Tvd

+ s1 − gds1 − ucdfMsp* ,Tld,

fcz,0 = fvspv,Tvd. s17d

Let us now consider an equilibrium case, whereTl =Tv=T
and no net evaporation or condensation occurs, which im-
plies thatCi =ci. In this case, the vapor pressure must be the
saturation pressure,pv=psatsTd, and the distribution(17)
must be the Maxwellian at the saturation pressure—i.e.,

FIG. 1. Velocity distributions
at the interface.
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fcz.0 = uefMspevap,Td + gs1 − ucdfM„psatsTd,T…

+ s1 − gds1 − ucdfMsp* ,Td = fM„psatsTd,T…,

fcz,0 = fvspv,Tvd = fM„psatsTd,T…. s18d

For these particular conditions, Eq.(16) for the pressurep*

reads

E
czù0

czgs1 − ucd

3fM„psatsTd,T…dc +E
czù0

czs1 − gds1 − ucdfMsp* ,Tddc

+E
czø0

czs1 − ucdfM„psatsTd,T…dc = 0.

From Eq. (10) it follows that we can write fMsp,T,Cd
=pFsT,Cd and thus Eq.(18) can be rewritten as

pevapue + psatsTdgs1 − ucd + p*s1 − ucds1 − gd = psatsTd.

s19d

Since eczø0czs1−ucdfM(psatsTd ,T)dc=−eczù0czs1−ucd
3fM(psatsTd ,T)dc, the equation forp* assumes the form

„p* − psatsTd…E
czù0

czs1 − gds1 − ucdFdc = 0.

The last equation implies thatp* =psatsTd in equilibrium,
since the integral is different from zero. With this it follows
from Eq. (19) that

pevapue = psatsTduc

must hold in thermal equilibrium. Most notably, this shows
that evaporation and condensation coefficients are not inde-
pendent.

The distribution of evaporating particles in equilibrium
sEd is therefore given by

fevapuE = uefMspevap,T,Cd = uepevapFsT,Cd

= ucpsatsTdFsT,Cd = ucfM„psatsTd,T,C….

This means that in equilibrium the distribution ofevaporat-
ing particles can be expressed by thecondensationcoeffi-
cient and the saturation pressure. The same function can be
used in nonequilibrium, if one assumes that the nonequilib-
rium between vapor and liquid has negligible effect on
evaporation. Under this assumption, the nonequilibrium
evaporation distribution follows from replacing the tempera-
ture T by the liquid temperatureTl so that

fevap = ucfM„psatsTld,Tl,C…. s20d

With uc given by Eq.(15) it follows that fevap dependsonly
on the state of the liquid, through the temperatureTl. Thus,
the use of Eq.(20) ignores any effect that the vapor might
have on evaporation, such as strong impacts of vapor par-
ticles that kick a liquid particle out of the interface. Another
assumption inherent in the use of Eq.(20) is that of local

equilibrium of the liquid: any gradients in temperature and
other quantities in the liquid are assumed to not affect the
distribution of evaporating particles.

D. Knudsen layer

In what follows it is assumed that all vapor molecules
interacting with the interface have the bulk vapor distribu-
tion, while those leaving the interface have a distribution
associated with the interface.

In reality, these two different molecular streams interact in
a small layer in front of the interface, which alters the distri-
butions of both. The interactions cause the distribution of the
escaping molecules to approach that of the bulk vapor. The
region where this equilibration occurs is referred to as the
Knudsen layer, which typically has a thickness of approxi-
mately one mean free path[32].

Within the Knudsen layer, the velocity distributions of
both molecule streams can no longer be described by the
bulk vapor and interface distributions. The distribution
change with location, making it difficult to resolve. Since the
incident vapor molecules no longer have the bulk vapor dis-
tribution, the characteristics of the vapor near the wall will
be altered. However, the effects are usually small, at least for
small to intermediateNKn. Because of this and the complex-
ity of the altered distribution functions, the Knudsen layer is
often neglected or set to zero thickness, and incident mol-
ecules are assumed to possess the bulk vapor distribution up
to the wall. This will be done here as well.

Sone[11], Cercignani[32], Rebrov[36], and Meland and
Ytrehus[37] provide a more detailed analysis of the Knud-
sen layer.

IV. GENERALIZED HERTZ-KNUDSEN THEORY

A. Distribution function

In the previous section we discussed the distribution func-
tion at the interface, and now we shall use the results to
compute the evaporation fluxj and the corresponding heat
flow Q as defined in Eqs.(7) and(8). The result depends on
the bulk distribution of the vaporfv, and in this section it is
assumed that the vapor is in a Maxwellian distribution where
the pressure differs from the liquid saturation pressure,pv
ÞpsatsTld, and the temperatures of vapor and liquid are al-
lowed to be different,TvÞTl. This is the basic assumption of
the classical Hertz-Knudsen theory, and for this reason we
consider it here. In nonequilibrium between vapor and liquid
one will expect temperature gradients in liquid and vapor, so
that the Chapman-Enskog distribution(14) will be a more
reasonable choice—it will be considered in the next section.

All computations are performed in a frame where the in-
terface is at rest. The vapor has a net velocityv= j /rv with
respect to the interface, and thusCz=cz− j /rv wherecz is the
microscopic velocity of a particle relative to the interface and
Cz the peculiar velocity, which is measured with respect to
the rest frame of the vapor. This difference is ignored in the
present section by settingCz=cz, so the results can be ex-
pected to be valid only for slow evaporation or condensation
rates. Then, the vapor distribution function is given by
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fv = fMspv,Tvd =
pv

mRTv

1
Î2pRTv

3
expS−

c2

2RTv
D . s21d

The distribution of the specularly reflected molecules is iden-
tical to the incident distribution, except that the signs of the
terms containingcz are reversed. Since the Maxwellian(21)
is quadratic in the velocity, reversing the sign of the velocity
for the reflected distribution has no effect; thus, the distribu-
tion of specularly reflected particles is

fv-refspv,Tvd = fMspv,Tvd.

Under these assumptions, the distribution function of the va-
por just at the interface is given by

fcz.0 = ucfM„psatsTld,Tl… + gs1 − ucdfMspv,Tvd

+ s1 − gds1 − ucdfMsp* ,Tld, s22d

fcz,0 = fMspv,Tvd.

This will now be used in Eqs.(7) and (8) to compute mass
and energy flux over the interface.

The pressurep* is computed from Eq.(16) which now
becomes

−
pv

Î2pRTv

+
gpv

Î2pRTv

+
s1 − gdp*

Î2pRTl

= 0, s23d

so that

p* = pvÎTl

Tv
. s24d

B. Evaporation and condensation mass flux

For the computation, the integral forj can be split into
half-space integrals

j =E mcz fdc =E
czù0

mcz fcz.0dc +E
czø0

mcz fcz,0dc.

s25d

After inserting(22), integration yields

j =
1

Î2p
ShsTl,Tld

psatsTld
ÎRTl

− hsTl,Tvd
pv

ÎRTv
D . s26d

Here,

hsTl,Td = cS1 −
Tlv

Tl + T
D s27d

is a mean condensation and evaporation coefficient for mass.
The mass evaporation coefficient ishsTl ,Tld=cs1−v /2d, a
constant which was already given in Ref.[17]. The mass
condensation coefficienthsTl ,Tvd depends on the tempera-
tures of both the vapor and liquid. Note that the accommo-
dation coefficient does not appear, since reflected particles do
not take part in evaporation or condensation.

C. Energy flux

The computation of the energy flux(8) follows the same
line: after splitting into two half-space integrals and inserting
Eq. (2), integration yields

Q =Î 2

p
fwsTl,TldpsatsTldÎRTl − wsTl,Tvdpv

ÎRTvg,

s28d

where the mean condensation and evaporation coefficient for
energy exchange at the interface is given by

wsTl,Td = gwssTl,Td + s1 − gdwdsTl,Td, s29d

with

wssTl,Td = cS1 − v
s2Tl + TdTl

2sTl + Td2 D s30d

and

wdsTl,Td = 1 −

1 − cS1 −
3v

8
D

1 − cS1 −
v

2
D F1 − cS1 − v

Tl

T + Tl
DGTl

T
.

s31d

Here,ws can be considered as a mean energy condensation
coefficient for specularly reflected particles andwd as a mean
energy condensation coefficient for diffusively reflected
(thermalized) particles.

The equations above link the mean evaporation and con-
densation coefficientshsTl ,Td andwsTl ,Td to the parameters
c and v that determine the condensation probability of a
single vapor particle hitting the interface. From the above
analysis follows that the mean evaporation coefficients
hsTl ,Tld andwsTl ,Tld are constants, while the mean conden-
sation coefficientshsTl ,Tvd and wsTl ,Tvd depend explicitly
on the temperatures of vapor and liquid.

D. Constant condensation coefficients

The factor v in Eq. (15) controls the temperature and
velocity dependence of the condensation coefficient. Setting
v=0 yields the constant condensation coefficientuc=c and

j =
c

Î2p
SpsatsTld

ÎRTl

−
pv

ÎRTv
D ,

Q = cÎ 2

p
HpsatsTldÎRTl

− Fg +
1 − g

c
S1 − s1 − cd

Tl

Tv
DGpv

ÎRTvJ . s32d

For the special casec=1 we recover the classical Hertz-
Knudsen laws[5,6]

j =
1

Î2p
SpsatsTld

ÎRTl

−
pv

ÎRTv
D ,
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Q =Î 2

p
fpsatsTldÎRTl − pv

ÎRTvg. s33d

Here we remark that for constant condensation and evapora-
tion coefficients, one often finds the generalized Hertz-
Knudsen equation written as[38,39]

j =
1

Î2p
SQepsatsTld

ÎRTl

−
Qcpv

ÎRTv
D . s34d

There is much debate regarding the values and dependences
of Qc andQe. Eameset al. [38] and Marek and Straub[39]
reviewed the literature on condensation and evaporation co-
efficients of water and found that published values for both
vary between 0.01 and 1. It is agreed upon thatQc and Qe
are equal in equilibrium. If they are constants, then they must
be equal also outside equilibrium to satisfy equilibrium con-
ditions. That is, j =Q=0 for the equilibrium conditionsTl
=Tv=T andpv=psatsTd only if Qe=Qc.

Note that even for the constant evaporation coefficient
Qc=c, the condensation coefficient in the energy flux,
wsTl ,Tvd, depends on the temperatures as long as thermali-
zation of reflected particles occurs—i.e., ifgÞ1—while the
corresponding coefficienthsTl ,Tvd is constant. Thermaliza-
tion implies an exchange of energy between vapor and liquid
without an exchange of mass, and that leads to the tempera-
ture dependence of the heat transfer coefficient.

V. CHAPMAN-ENSKOG THEORY

A. Distribution function

In general, net evaporation or condensation occurs in non-
equilibrium processes, where the vapor will not be in a Max-
wellian distribution. As long as the vapor is not too rarefied,
the Chapman-Enskog distribution(14) will give a good de-
scription of the bulk vapor; we shall consider it now for the
computation of the interface fluxes.

As before, we consider a frame where the interface is at
rest. We assume that the normal of the interface points into
the z direction and that the vapor velocityvi =h0,0,vzj has
no contribution parallel to the interface. Furthermore, we
shall assume that the flow velocityvz is relatively small and
linearize in this quantity, so that the square of the peculiar
velocity is

C2 = c2 − 2vzcz + v2 . c2 − 2vzcz. s35d

We substitute for the peculiar velocity into the Maxwellian
(10) and perform a first-order Taylor expansion about zero in
vz to obtain the Maxwellian for a small mean vapor velocity:

fM-v =
p

mRT

1
Î2pRT3

expS−
c2

2RT
DS1 +

czvz

RT
D . s36d

Equation(36) is incorporated into the first-order CE dis-
tribution, Eq.(14), which for one-dimensionial problems can
be written as

fCE-v = fM-vX1 −
2

5

k

pR
czS c2

2RT
−

5

2
D1

T

dT

dz
C

=
p

mRT

1
Î2pRT3

expS−
c2

2RT
D

3F1 +
czvz

RT
−

2

5

k

pR
czS c2

2RT
−

5

2
D1

T

dT

dz
G , s37d

where second-order terms invz anddT/dz are ignored.
Integrating Eqs.(7) and(8) over full velocity space using

Eq. (37) yields the bulk mass and energy flows as

j =
p

RT
vz, Q =

5

2
pvz − k

dT

dz
.

These can be used to rewrite the CE distribution as

fCE-v =
p

mRT

1
Î2pRT3

expS−
c2

2RT
D

3F1 −
j

p
S c2

2RT
−

7

2
Dcz +

2

5

Q

pRT
S c2

2RT
−

5

2
DczG .

s38d

This distribution will be used to represent the bulk vapor and
the distribution of condensing particles.

The distribution of the specularly reflected particles is
given by

fCE-v-ref =
p

mRT

1
Î2pRT3

expS−
c2

2RT
D

3F1 +
j

p
S c2

2RT
−

7

2
Dcz −

2

5

Q

pRT
S c2

2RT
−

5

2
DczG .

Note that the signs of the terms containingcz have changed
from the incident distribution(38).

The evaporating molecules are again described by the
equilibrium Maxwellian distribution, Eqs.(10) and(20). The
mean velocity of the evaporating molecules is assumed to be
equal to the velocity of the liquid at the interface. Due to
mass conservation,vlrl =vvrv= j , and since the liquid density
is much greater than the vapor density,rl @rv, it follows that
vl !vv. Since the vapor velocity is assumed to be small, the
liquid velocity is negligible. It follows that the evaporating
distribution can be approximated by the equilibrium Max-
wellian with C=c, as in the Hertz-Knudsen approach pre-
sented earlier.

The interface distribution is then given as

fcz.0 = ucfM„psatsTld,Tld + gs1 − ucdfCE-v-refspv,Tvd

+ s1 − gds1 − ucdfMsp* ,Tld,

fcz,0 = fCE-vspv,Tvd, s39d

where, again, the pressurep* follows from Eq.(16).

B. Mass and energy flux

Tedious manipulations reveal that the fluxes of mass and
energy at the interface are given by
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j =
1

Î2p
SfR11

−1hsTl,Tld + 2R12
−1wsTl,TldRTlg

psatsTld
ÎRTl

− fR11
−1hsTl,Tvd + 2R12

−1wsTl,TvdRTvg
pv

ÎRTv
D ,

Q =Î 2

p
SF R21

−1

2RTl
hsTl,Tld + R22

−1wsTl,TldGpsatsTldÎRTl

− F R21
−1

2RTv
hsTl,Tvd + R22

−1wsTl,TvdGpv
ÎRTvD , s40d

whereRab
−1 are the elements of the inverse of the matrixR:

R11 =
2 − c

2
+

cv

2

Tl
3/2STl +

5

2
TvD

sTl + Tvd5/2 ,

R12 = −
3

10

cv

R

Tl
3/2

sTl + Tvd5/2,

R21 = s1 − gd
1 − cs1 − 3v/8d
1 − cs1 − v/2d

3F1 − c + cvSTl +
5

2
TvD Tl

3/2

sTl + Tvd5/2GRTl

+
1

8
gcv

Tl
3/2s21TvTl + 6Tv

2d
sTl + Tvd7/2 RTv,

R22 =
1 + gs1 − cd

2

−
3

5
cvS1 −

1

8

cvs1 − gd
1 + csv/2 − 1dD Tl

5/2

sTl + Tvd5/2

+
gcv

20

Tl
3/2s22Tl

2 + 5TvTl − 2Tv
2d

sTl + Tvd7/2 .

Comparison with Eqs.(26) and (28) indicates that for the
Maxwellian caseR11

−1=R22
−1=1 andR12

−1=R21
−1=0, so that in

this caseR is the unit matrix.
The factors in the square brackets in Eqs.(40) are the

mean evaporation and condensation coefficients. It is evident
that they are complicated functions of the temperaturesTl ,Tv
and the coefficientsg ,v ,c, but we shall not give the explicit
expressions. Instead, we consider some special cases for the
parameters.

C. Constant condensation coefficients

1. All vapor particles condense:v=0 and c=1

The most common assumption in the literature is that all
vapor particles that hit the interface condense; this corre-
sponds to settinguc=1—that is, v=0 and c=1. For this
case, mass and energy fluxes are twice as large as for the
classical Hertz-Knudsen theory(33)—i.e. [1,40],

j = 2
1

Î2p
SpsatsTld

ÎRTl

−
pv

ÎRTv
D ,

Q = 2Î 2

p
spsatsTldÎRTl − pv

ÎRTvd. s41d

2. Condensation probability independent of impact energy:v=0
and cÅ1

This case assumes that all vapor particles have the same
likelihood for condensation, irrespective of their energy, and
allows for diffuse and specular reflection. In this case, the
evaporation and condensation mass flux is given by

j =
2c

2 − c

1
Î2p

SpsatsTld
ÎRTl

−
pv

ÎRTv
D s42d

and the corresponding energy flux is

Q =Î 2

p
S 2c

2 − c
psatsTldÎRTl − F s1 − g + gcds2 − cd

cf1 + gs1 − cdg

−
2s1 − gds1 − cd
cf1 + gs1 − cdg

Tl

Tv
Gpv

ÎRTvD . s43d

The mass flux does not depend on the number of specularly
reflected particles, as can be seen from its independence from
g, but the energy flux depends ong. This reflects the fact that
thermalized vapor particles exchange energy with the liquid,
while specularly reflected particles only exchange momen-
tum.

If all particles that do not condense are specularly re-
flected, we haveg=1 and the energy flux reduces further to

Q =
2c

2 − c
Î 2

p
fpsatsTldÎRTl − pv

ÎRTvg. s44d

For the special case that all noncondensing particles are
thermalized,g=0, we obtain instead

Q =
2c

2 − c
Î 2

p
SpsatsTldÎRTl

− F2Tl − Tv

Tv
+

2

c

Tv − Tl

Tv
Gpv

ÎRTvD . s45d

Note that all cases discussed here fulfill the equilibrium
conditions—that is,j =Q=0 if Tl =Tv=T andpv=psatsTd.

Equation(42) for the mass flow is due to Schrage[1]; see
also [40]. Ytrehus [41], through comparison with the
Bhatnager-Gross-Krook-Welander model equation and
DSMC simulations, finds that the Hertz-Knudsen(HK) mass
flux (33) underestimates the mass flux by an approximate
factor of 2. He also observes that the Schrage expression(42)
leads to a slightly overestimated mass flux, likely due to
neglect of collisional effects in the Knudsen layer.

D. A remark on momentum flux

The momentum flux per unit area normal to the interface
is given by
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Pzz=E
−`

`

mcz
2fdc.

When evaluated in the bulk vapor, where the distribution is
given by Eq.(37)—i.e., under omission of quadratic terms
and shear stress effects—this yields

Pzzubulk = pv.

When computed with the interface distribution(39),
Pzzuinterfaceis different from the bulk value, with an expression
that is not shown here. Barrett and Clement[40] argue that
this discrepancy between normal force at interface and in the
bulk implies the violation of the conservation law for mo-
mentum which states thatPzz must be a constant. The expla-
nation for this problem lies in the fact that(a) we omitted
anisotropic stresses in the distribution functionfCE-v and(b)
we ignored the Knudsen layer. In particular, one can expect
that the difference between the bulk and interface values,
Pzzuinterface−Pzzubulk, would vanish exponentially over the
Knudsen layer—that is, within the distance of few mean free
paths away from the interface—if Knudsen layer effects
were accounted for. In our treatment, the Knudsen layer is
reduced to zero thickness, which results in a jump forPzz.

In order to discuss the importance of this jump in the
momentum flux, we computed the relative error 1
−Pzzuinterface/Pzzubulk for random values of the parameters
within their range of definition as suggested by the Toronto
experiments—viz.,vP f0,1g, cP f0,1g, gP f0,1g, Tl ,Tv
P f273 K,313 Kg, and pv ,psatP f0.611 kPa,10 kPag. We
found an average relative error of,0.6% based on 105

sample calculations. It follows that the error is not signifi-
cant, and thus the simplifying assumptions are justified.

Note that Barrett and Clement’s discussion is based on the
so-called Schrage distribution at the interface[40], which
results from settingQ=0 in Eq.(38). For this case they point
out problems with the energy flux as well, which we believe
are due to not having the energy flux in the distribution func-
tion. Since we use the Chapman-Enskog distribution(38)
with the energy flux, this criticism does not apply.

VI. PHENOMENOLOGICAL THEORIES

A. Thermodynamic of irreversible processes

For reasons of comparison, we briefly discuss simple phe-
nomenological laws for the evaporation mass and energy
fluxes, which are based on the concepts of thermodynamics
of irreversible processes[19].

The balances of energy and entropy at the interface read

jhl + ql = jhv + qv, s46d

s = jssv − sld +
qv

Tv
−

ql

Tl
ù 0, s47d

where ql ,qv are the nonconvective energy fluxes in liquid
and vapor, respectively, ands is the entropy generation rate
due to evaporation or condensation. These two equations can
be combined to give

s = jFgl

Tl
−

gv

Tv
+ hvS 1

Tv
−

1

Tl
DG + qvS 1

Tv
−

1

Tl
D ù 0,

s48d

whereg=h−Ts is the Gibbs free energy.
We follow the ideas of classical TIP and write the entropy

production s as a sum of products of “thermodynamic
fluxes” JA and “thermodynamic forces”FA,

s = o
A

JAFA,

where, in our case,

JA = h j ,qvj, FA = H gl

Tl
−

gv

Tv
+ hvS 1

Tv
−

1

Tl
D,

1

Tv
−

1

Tl
J .

s49d

Positivity of the entropy production is guaranteed by a linear
“phenomenological ansatz”

JAo
B

AABFB,

where the matrixAAB must be positive definite.
The choice of fluxes and forces is not unique, and a linear

transformationX̂AB can be used to define new fluxes and

forces according toĴB=JAX̂AB, F̂B=X̂BC
−1FC, while s=JAFA

= ĴBF̂B. The phenomenological laws for the transformed

quantities readĴA=ÂABF̂B, with the corresponding matrix of

phenomenological coefficients given asÂAB=X̂AC
T ACDX̂DB.

According to the Onsager symmetry relations[19], there is

one choice of forces and fluxes,J̃A and F̃A, so that the cor-

responding matrix of phenomenological coefficientsÃAB is
symmetric. This in turn implies that the matrix of phenom-
enological coefficients can be diagonalized, that is there is a

transformationX̄AB so that the corresponding fluxes and

forcesJ̄A,F̄A are related by a diagonal matrixÃAB=lAI dAB (no
summation over indexA). Only detailed measurements can
reveal the values of the phenomenological coefficientsAAB.

In this paper, we are mainly concerned with the models
derived from kinetic theory, and we wish to consider a TIP-
based model mainly for comparison. Therefore we choose
the simplest approach, in which the matrixAAB is a diagonal
matrix, so that

j = bFgl

Tl
−

gv

Tv
+ hvS 1

Tv
−

1

Tl
DG , s50d

qv = aS 1

Tv
−

1

Tl
D . s51d

b anda are the phenomenological coefficients, which must
be non-negative to ensure non-negative entropy production.
While this simple model gives results in good agreement to
the experiments, we wish to emphasize that a detailed study
of the Toronto experiments based on TIP should account for
a completely filled matrixAAB, including the nondiagonal
elements, which describe the cross coupling of fluxes and
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forces. As will be seen, the simulation results depend
strongly on the geometry of the experiments. With the simple
choice above, we can reproduce the general trends of the
experiment, and only an exact simulation of the
experiment—including its geometry—could be used to ex-
actly determine the values of the coefficientsAAB.

Equation(51) implies that the heat flow from the interface
into the vapor is solely driven by the temperature difference
between liquid and vapor. Since Eq.(46) givesql =qv+ jshv
−hld, this also implies that the heat of evaporationjshv−hld is
absorbed from(in the condensation case) or provided by(for
evaporation) the liquid. This is plausible, since the heat con-
ductivity of the liquid is substantially larger than the heat
conductivity of the vapor.

We remark also that the heat flux in the bulk vapor is of
course given by Fourier’s law(12), while expression(51) is
valid only at the interface.

For equilibrium wheregl =gv andTl =Tv, we see that Eqs.
(50) and(51) reduce toj =0 andqv=0 (which impliesQ=0),
satisfying the equilibrium conditions.

B. Statistical rate theory

Ward and Fang[23] used statistical rate theory to find an
expression for the interface mass flux,

j = ksHexpF gl

RTl
−

gv

RTv
+

hv

R
S 1

Tv
−

1

Tl
DG

− expF− gl

RTl
+

gv

RTv
−

hv

R
S 1

Tv
−

1

Tl
DGJ , s52d

where the two terms are the evaporation and condensation
rates, respectively. The coefficientks is given as

ks =
qpsatsTld
Î2pRTl

, q = expHvlsTld
RTl

fpl − psatsTldgJ ,

wherepl .pv is the liquid pressure at the interface. Note that
we have changed the units(from molecular to mass units) in
these expressions, to adjust them to the other equations.vl
denotes the specific volume of the liquid. For water in our
range of study,Tl <298 K, andvl <10−3 m3/kg; we estimate
vlsTld /RTl <10−8 m2/N. The difference betweenpl

e and
psatsTld is small, thusq<1, and the factor in front of the
exponential reduces to

ks =
psatsTld
Î2pRTl

. s53d

Hereks is just the first term of the HK mass flux(33) which
assumes that all vapor particles that hit the interface con-
dense. Thus, the same assumption is present in the SRT ex-
pression[23].

When we assume that the arguments in the exponentials
are small, the SRT mass flux can be linearized to give

j =
2ks

R
Fgl

Tl
−

gv

Tv
+ hvS 1

Tv
−

1

Tl
DG . s54d

This is identical to the mass flux expression of TIP(50) when
we identify

b = bSRT=
psatsTld

R
Î 2

pRTl
. s55d

Ward and Fang[23] do not provide an expression for the
energy flux. However, in order to completely solve the bal-
ance laws for evaporation and condensation problems, an
expression for the heat flux is indispensable. The above
analysis shows that the SRT mass flux is essentially a non-
linear form of Eq.(50), and we suggest that the energy flux
(51) can be used as a substitute in the absence of an SRT
energy flux expression. It would be interesting to use SRT to
find a nonlinear expression forQ, but this is outside the
scope of our work.

Finally we comment that the values of the phenomeno-
logical coefficientsAAB or—in our simplified theory—a and
b are not constants, but will depend on the local conditions,
in particular on the temperaturesTl andTv and on the pres-
surepv. Thus, the coefficients must be determined by fitting
to measured data. Since the SRT expressionbSRT follows
from the assumption that all vapor particles condense—i.e., a
condensation coefficient ofuc=1—one can introduce the
condensation coefficient here by settingb=ucbSRTand fit uc
anda to the experiments.

VII. EVAPORATION AND CONDENSATION
EXPERIMENTS

A. Toronto experiments

To test our models, we shall aim at simulating the experi-
ments by Ward, Fang, and Stanga[2–4], who studied liquid
evaporating from or condensing to its own vapor. Figure 2
shows their apparatus[4].

Water was supplied through the bottom of the funnel by a
syringe pump and withdrawn as vapor from the top of the
chamber. Steady-state evaporation was achieved by adjusting
the rate of liquid water entry at the inlet and regulating the
vapor pressure by opening and closing a vacuum valve in
line with a vacuum pump.

For condensation, the syringe pump withdrew water at a
constant rate and the water exiting the funnel was cooled by
a cooling jacket causing the water vapor in the chamber to
condense. Steady state was maintained by allowing water to
evaporate from the test liquid reservoir to replace the water
condensing into the funnel.

The evaporation and condensation rates were measured
based on the syringe pump rate. The vapor pressure was
measured with a mercury manometer. Temperatures in the
liquid and vapor were measured along the center line with
thermocouples, which were located using a positioning mi-
crometer. The liquid vapor interface position and radius of
curvature were established by observation using a cathetom-
eter. Temperatures were measured in the vapor within one to
five mean free paths of the interface. Temperatures in the
liquid were measured within 0.25 mm of the interface.

The apparatus was radially symmetric. The liquid vapor
interface at the top of the funnel was assumed to be hemi-
spherical. Ward, Fang, and Stanga suggest there is very little
heat transfer with, or through the walls of the funnel.
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For evaporation Fang and Ward[2,3], Tv was as much as
7.8°C higher than the liquid interface temperatureTl. Ward
and Stanga[4] observedTv.Tl also for condensation, but
with smaller jumps. They observed the same vapor tempera-
ture gradient direction in condensation as for evaporation[4].

Table I gives the values of a typical experiment, whereTbl
andTbv are the boundary temperatures of liquid and vapor,Ll
andLv are the distance between interface and boundaries for
liquid and vapor, andTl and Tv denote the temperatures of
liquid and vapor directly at the interface.

As becomes clear from Fig. 2, the experiment takes place
in a three-dimensional setting. In the following, we shall try
to mimic the main features of the experiments by considering
simpler geometries. Since it turned out that geometrical ef-
fects play an important role, we consider planar and spherical
one-dimensional settings.

B. One-dimensional planar interface geometry

Figure 3 describes the basic geometry of the one-

dimensional(1D) planar setting. All fluxes and gradients are
assumed to be perpendicular to the liquid vapor interface,
which is a plane. The one-dimensional mass flux per unit
area j and the energy flux per unit areaQ are defined as
positive in the positivez direction, the direction of evapora-
tion. At the interface,z=0, the liquid temperature isTl and
the vapor temperature isTv.

The liquid and vapor boundary temperatures are specified
such that at the liquid boundaryz=−Ll the liquid temperature
is Tbl, and at the vapor boundaryz=Lv, the vapor tempera-
ture is Tbv. Furthermore, the pressure in the vaporpv is
controlled—e.g., by a pump.

Mass and energy flow either when a temperature gradient
is imposed across the system,TblÞTbv, or by perturbing the
vapor pressurepv away from the saturation pressurepsatsTd.
For equal boundary temperaturesTbl=Tbv=Tb, a vapor pres-
sure below the saturation pressurepv,psatsTbd will cause a
net evaporation, whilepv.psatsTbd will cause a net conden-
sation.

Note that, in accordance with the Toronto experiments,
interface and boundaries remain at fixed locations, which
implies that mass is transported over the boundaries.

C. Balance equations

We first consider the bulk fluids away from the interface.
The balance of mass[42] for one-dimensional steady state
reduces to

]rvz

]z
= 0, s56d

wherez represents the vertical direction; see Fig. 3. Equation
(56) implies that the mass fluxj =rvz is constant with posi-

TABLE I. Evaporation experiment E1 data of Wardet al. [4].

Prescribed data Measured data

pv (Pa) Ll (mm) Lv (mm) Tbl (°C) Tbv (°C) Tl (°C) Tv (°C) DT j skg/m2 sd

593 4.970 18.590 26.060 25.710 −0.4 2.6 3.0 1.017310−3

FIG. 2. Setup of the Toronto steady-state evaporation experi-
ment [4].

FIG. 3. Geometry of the planar setting.
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tion everywhere in the domain. Moreover, since no mass is
accumulated at the interface, the mass flow from the liquid
into the interface must be equal to the mass flow from the
interface to the vapor, so that

j = rlvl = rvvv = const, s57d

where the indexl refers to the liquid and the indexv refers to
the vapor. The value ofj directly at the interface must be
computed from the interface conditions presented above, and
j has the same constant value throughout the domain.

The conservation of energy[42] in differential form for
one-dimensional steady state processes reads

]

]z
FrSu +

v2

2
Dvz + pzzvz + qzG = rFzvz. s58d

Here,u is the internal energy andqz=−k ]T/]z is the con-
ductive heat flux. Again, we neglect the kinetic energy term
v2/2, since it will be insignificant relative to the internal
energy as long as the evaporation rate is small, which is the
case if the evaporation Mach number Ma=v /Îscp/cvdRT is
not larger than 0.1. Moreover, we neglect gravitational ef-
fects, which play no role for this process(apart from keeping
the denser liquid below the vapor), and assume isotropic
pressure and no shear forces, so thatpij =pdi j . Under these
assumptions the one-dimensional steady-state energy balance
reduces to

]

]z
Frhvz − k

dT

dz
G = 0,

whereh=u+p/r denotes specific enthalpy. Like the balance
of mass this reduces to constant liquid and vapor total energy
fluxes,

Q = jhl − kl
dT

dz
= jhv − kv

dT

dz
= const. s59d

The value ofQ directly at the interface must be computed
from the interface conditions presented above, andQ has the
same constant value throughout the domain. The(differen-
tial) equations(57) and(59) must be solved together with the
interface conditions to find the values of the fluxesj andQ,
as well as the temperature profiles in vapor and liquid, and
the temperature jump at the interface.

Before we proceed with the solution, we briefly show
that, under our assumptions, pressure gradients can be ig-
nored. The momentum balance in for steady state in the one-
dimensional setting reads[42]

]p + rvzvz

]z
= rg, s60d

where we again usedpij =pdi j . As before, we can ignore
the square of the velocity if the Mach number is small.
Moreover, due to the low density of the vapor, the gravita-
tional force can be ignored as well, so that the pressure in the
vapor is constant throughout the domain,

]pv

]z
= 0. s61d

In particular, the pressure of the vapor directly at the inter-
face is equal to the pressure prescribed at the boundary.

D. Constitutive assumptions

In order to solve the boundary value problem, constitutive
equations for enthalpies, heat flux, and saturation pressure
are required. We consider these under the simplifying as-
sumptions that the liquid is incompressible and the vapor an
ideal gas with constant specific heats. Since the Toronto ex-
periments were performed with water, we shall consider the
values for water, with exception of the vapor heat capacity:
Since we considered the evaporation and condensation rates
for a monatomic gas we need to be consistent and consider
the specific heat for monatomic molecules

cp =
5

2
R= 1.15 kJ/skg Kd, s62d

whereR=0.462 kJ/skg Kd is the gas constant of water.
For the liquid we have enthalpy and entropy given by

hl = clsT − T0d , sl = cl ln
T

T0
, s63d

where cl =4.18 kJ/skg Kd is the specific heat andT0

=298 K is a reference temperature. Note that for an incom-
pressible liquid the enthalpy has an additional terms1/rld
3spl −p0d, which, however, can be ignored for smaller de-
viations from the reference pressurep0=psats298 Kd
=3.169 kPa due to the large mass densityrl.

Under the assumption that the specific heatcp of the vapor
is constant, vapor enthalpy and entropy are given as

hv = cpsT − T0d + Dh0 , sv = cp ln
T

T0
− R ln

p

p0
+

Dh0

T0
,

s64d

with the enthalpy of vaporizationDh0=2442.3 kJ/kg atT0.
This choice ensures that at the reference temperature the heat
of evaporationhv−hl =T0ssv−sld has its proper value. In gen-
eral we have for the heat of evaporation(for Tv=Tl =T at the
interface) hv−hl =Dh0−scl −cpdsT−T0d which gives a reason-
able approximation for small deviations from the tempera-
ture T0.

The saturation pressurepsatsTd is the equilibrium pressure
of a fluid at temperatureT that exists simultaneously in both
liquid and vapor phases, with the well-known equilibrium
conditions

p = pv = pl = psatsTd, T = Tv = Tl, gl = gv. s65d

With the above relations for enthalpy and entropy andg=h
−Ts, the last condition can be solved for saturation pressure,
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psatsTd = p0 expHcl − cp

R
F1 −

T0

T
− lnS T

T0
DG

+
Dh0

R
S 1

T0
−

1

T
DJ . s66d

The saturation pressure computed from this equation
matches well with tabulated data for temperatures between
273 K and 373 K(despite the error in the specific heat of the
vapor).

Finally, we assume that the heat conductivities of liquid
and vapor are constants, which we also chose for water at
298 K. Then we have kl =0.55 W/m K and kv=1.4
310−2 W/m K [43].

The actual values of the coefficientscl, cp, kl, kv, etc., are
not constant, but depend on the local temperature. We did
some studies for the importance of the temperature depen-
dence for the results[44], which showed that influence of the
temperature variation is reasonably small, so that the as-
sumption of constant parameters is well justified.

E. Reference adjustment

The vapor enthalpy used in our kinetic-theory-based
equations differs from the vapor enthalpy(65), since both are
based on different reference values. Indeed, in kinetic theory
the enthalpy is given byhvukt=cpT which gives a difference
hvukt−hv=cpT0−Dh0.

In order to compensate for this difference, the total energy
flux Qkt as computed from kinetic theory must be corrected
by adding the portion of convective energy flow due to the
different reference enthalpies, which yields

Q = Qkt + jsDh0 − cpT0d. s67d

At first glance it seems that the change of the reference state
influences the expression for the entropy generation(47) and
(48) or the thermodynamic forces(49). However, a closer
look on Eq. (47) reveals that the entropy generation rate
depends only on the differencesv−sl and the nonconvective
fluxesql andqv, and is therefore independent of the chosen
reference. Also the thermodynamic forces(49) are indepen-
dent from the chosen reference, since they can be written as

FA = Hsv − sl −
hv − hl

Tl
,

1

Tv
−

1

Tl
J . s68d

This in turn implies that the phenomenological laws for the
fluxesJA=h j ,qvj, which were given asJA=oAABFB, are not
affected by a change in the reference states for enthalpy or
entropy. Indeed, only the total energy fluxQ is affected,
since the convective energy transportjh changes.

F. Liquid and vapor temperature profiles

After inserting the relations for enthalpy, Eqs.(63) and
(64), the energy balance, Eq.(59), can be written as

jclsTlszd − T0d − kl
dTlszd

dz

= jfcpsTvszd − T0d + Dh0g − kv
dTvszd

dz

= Q. s69d

These are two differential equations for the temperature in
liquid and vapor, respectively. Note that, by Eqs.(57) and
(59), Q and j are constants. Solution by using the variation of
parameters and the boundary conditions for temperature
yields

Tlszd = Tcl + sTbl − TcldexpSz+ Ll

al
D , s70d

Tvszd = Tcv + sTbv − TcvdexpSz− Lv

av
D . s71d

Here, we have introduced the constants

Tcl =
Q

jcl
+ T0 , al =

kl

jcl
s72d

and

Tcv =
Q

jcp
+ T0 −

Dh0

cp
, av =

kv

jcp
. s73d

The temperaturesTl and Tv directly at the interface, where
z=0, are

Tl = Tcl + sTbl − TcldexpSLl

al
D , s74d

Tv = Tcv + sTbv − TcvdexpS− Lv

av
D . s75d

By Eqs. (72) and (73), the constantsTcl and Tcv depend on
the values of the interface fluxes,j andQ, which in turn are
functions of the temperaturesTl andTv directly at the inter-
face, as computed in Secs. IV and V,

j = JsTl,Tvd, Q = QsTl,Tvd. s76d

The last four equations(74)–(76) therefore form a nonlinear
set of equations for the four constantsTl, Tv, j , andQ. The
four equations were solved simultaneously using the “Find-
Root” function in Mathematica 4.1, which uses Newton’s
method with an initial guess to converge to an accuracy of
six digits [45]. We made initial guesses for the two interface
temperatures and fluxes, based on trial and error and knowl-
edge of the equilibrium position. If these guesses are suffi-
ciently close to the solution, then Newton’s method will con-
verge to a solution. There is no guarantee that there is only
one solution, and it is possible that different solutions might
be found with different initial guesses. However, we discount
the possibility of multiple solutions for our system of equa-
tions for two reasons: the solutions we found appear to be
realistic and agree well with measured data, and variation of
the initial guesses did not alter the converged solution.
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Should the initial guess be too far from the solution and
sufficient convergence is not achieved, an error message of
nonconvergence is displayed.

G. Spherical geometry

We also consider the evaporation and condensation prob-
lem in spherical geometry(see Fig. 4) since we believe that
the results of the Toronto experiment depend on geometry
and can be better described in spherical geometry.

The boundary conditions are chosen as follows: the liquid
boundary temperatureTbl is maintained at radiusr l, the
liquid-vapor interface is atr i, and the vapor boundary tem-
peratureTbl is maintained atrv. Moreover, the pressure of the
vapor pv is controlled by pumping vapor in or out at the
outer boundary, and the location of the interface is kept con-
stant by supplying or withdrawing liquid atr l.

The temperatures of liquid and vapor interface areTl and
Tv, respectively, and mass flux and energy fluxes at the in-
terface are denoted asj i andQi. The radial fluxes and gradi-
ents are defined as positive for the outward direction, and we
assume only radial fluxes, gradients, and jumps.

In steady state, the mass flux through each shell of con-
stant radius must be the same, so that

j rsrdr2 = j ir i
2 = const. s77d

Also the total energy flux through each shell must be the
same, so that

Qrsrdr2 = Qiri
2 = const. s78d

The energy flux per unit area is now given by

Qr = j rh + qr =
j ir i

2

r2 h − k
dTsrd

dr
. s79d

Combining the last two equations yields a differential equa-
tion for temperature which must be solved for the vapor and
the liquid. For the temperature in the vapor one finds

Tvsrd = Tcv + sTbv − TcvdexpS r − rv

rr vav
D , s80d

with the constants

Tcv =
Qi

j icp
+ T0 −

Dh0

cp
, av =

kv

j ir i
2cp

. s81d

The results for the liquid reads

Tlsrd = Tcl + sTbl − TcldexpS r − r l

rr lal
D , s82d

with the constants

Tcl =
Qi

j icl
+ T0, al =

kl

j ir i
2cl

. s83d

Note that by Eqs.(81) and (83), the constantsTcl and Tcv
depend on the values of the interface fluxes,j i andQi, which
in turn are functions of the temperaturesTl andTv directly at
the interface, as computed in Secs. IV and V,

j i = JsTl,Tvd, Qi = QsTl,Tvd. s84d

As in the planar case, Eqs.(80)–(84) form a nonlinear set of
equations for the four constantsTl, Tv, j i, andQi, which must
be solved numerically.

Here it must be mentioned that we derived the interface
mass and energy fluxes(40) for the special case of planar
geometry. The results can be used for spherical interfaces as
long as surface tension effects play no role. When surface
tension effects are important, the saturation pressure must be
corrected according to(see, e.g., Ref.[10])

psat8 sTd = psatsTdexpS2h

rc

v
RT

D , s85d

whereh is the surface tension coefficient andrc is the radius
of curvature. We estimate the correction for the case of water
at T=273 K, which has a surface tension coefficient ofh
=7.27310−2 J/m2 [46], and a specific volume ofv
=10−3 m3/kg. The correction factor becomes exps1.15
310−9 m/rcd, and this gives a correction above 1%, if the
radius of curvature is less than 1.15310−9 m/ ln 1.01=1.16
310−7 m. For larger radii, as encountered in the Toronto
experiments, surface tension effects can be neglected.

VIII. SOME SIMPLE ESTIMATES

A. Planar case

In order to understand the relation between experiment
and equations better, we discuss the experiments and equa-
tions together based on simple estimates of the magnitude of
various terms. In order to have an easier access, we consider
the case wherev=0; i.e., the condensation coefficient is in-
dependent of the impact energy. In this case the mass flow
through the interface is given by Eq.(42) which can be ma-
nipulated to give

psatsTldÎTv

Tl
− pv =

2 − c

c
Îp

2
RTv j . s86d

The measured value of the mass flow is aboutj =1.
310−3 kg/sm2 sd, and for a vapor temperature of 280 K we
obtainÎsp /2dRTv j .0.45 Pa which is three orders of mag-

FIG. 4. Spherical model geometry.
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nitude smaller than the pressurepv.600 Pa. It follows that
the difference betweenpv andpsatsTldÎTv /Tl is very small, as
long as the condensation coefficientc is not too small. Since
the measurements indicate that the temperature difference
between vapor and liquid is not more than 1% or 2%, it
follows that psatsTld.pv which implies that the liquid tem-
perature at the interface is close to the saturation temperature
at the prescribed vapor pressureTl .Tsatspvd. Only when the
condensation coefficient is small—e.g.,c,0.05—will a
marked difference between the two pressures be observed.

We proceed to discuss the case for sufficiently large con-
densation coefficient, whereTl .Tsatspvd, by turning our at-
tention to the energy balance(59). Note that the exponentials
in Eqs.(70) and (71) can be reduced to linear functions for
small mass flows, where the coefficientsal and av become
small. Then we can replace the differentials by finite differ-
ences, and the equation can be rewritten as

jshv − hld =
kv

Lv
sTbv − Tvd −

kl

Ll
sTl − Tbld.

While the differencehv−hl depends on the local tempera-
tures of liquid and vapor, it is mainly determined by the
enthalpy of evaporation, so that we can sethv−hl .Dh0.
Moreover, in good agreement with the experiment, we set
Tbv−Tv.Tbl−Tl, which implies that the temperature jump at
the interface is ignored for this argument, and equal bound-
ary temperatures are assumed. With all assumptions used, we
obtain

j . Fkv

Lv
+

kl

Ll
GTbl − Tsatspvd

Dh0
.

kl

Ll

Tbl − Tsatspvd
Dh0

. s87d

With the data from the experiment in Table I, this rough
estimate yields

j . 1.23 10−3 kg/sm2 sd,

which is surprisingly close to the measured value. Note that
the contribution of the vapor heat conductivity can be ig-
nored here, sincekv /Lv!kl /Ll.

We emphasize that this estimate is independent of the
value for the evaporation coefficient. Our numerical simula-
tions agree well with this value and with the statement that
the condensation coefficient has only little influence on the
evaporation mass flow. The very weak dependence of the
evaporation mass flow on the condensation coefficient might
give an explanation of why measured values of the conden-
sation coefficient assume a wide variety of values.

A similar estimate can be performed on the phenomeno-
logical laws (50) and (52), which would lead to the same
conclusion—namely, that the liquid interface temperature is
close to the saturation temperatureTsatspvd and that the
evaporation mass flux is approximately given by Eq.(87). In
this case, the evaporation mass flow is not much influenced
by the phenomenological coefficientb which here plays a
similar role as the condensation coefficient does in the ki-
netic theory based models. Again, this agrees with our nu-
merical simulations.

B. Spherical geometry

We consider the same problem for the spherical case,
which seems to better match the geometry of the experiment,
in particular for the funnel. We start by introducing the in-
terface temperatures into the expressions for temperature,
Eqs.(80) and (82), which yields, for the gradients,

dTvsrd
dr

=
Tbv − Tv

avr
2

expS r − rv

rr vav
D

1 − expS r i − rv

r irvav
D ,

dTlsrd
dr

=
Tbl − Tl

alr
2

expS r − r l

rr lal
D

1 − expS r i − r l

r ir lal
D .

The energy balance directly at the interface can be written as

j ihvui − kvUdTvsrd
dr

U
i
= j ihl ui − klUdTlsrd

dr
U

i

or with the above expressions, for the gradients,

j ihvui −
Tbv − Tv

av

kv
r i

2

1

expS−
r i − rv

rr vav
D − 1

= j ihl ui −
Tbl − Tl

al

kl
r i

2

1

expS−
r i − r l

r ir lal
D − 1

.

As above, we assume thatTbl−Tl .Tbv−Tv andTl =Tsatspvd,
so that

j ishvui − hl uid = fTbl − Tsatspvdg3 kv

avr i
2

1

expS−
r i − rv

r irvav
D − 1

−
kl

alr
2

1

expS−
r i − r l

r ir lal
D − 14 .

Next we use the definitions of the coefficientsal and av in
Eqs.(81) and(83) and assume, again, that we can expand the
exponentials since their arguments are reasonably small, to
obtain

j i =
kl

Ll

Tbl − Tsatspvd
Dh0

L, s88d

where

L =
Ll

r l 3
kvr l

klr i

1 −
r i

rv

+

r l

r i

r i

r l
+ 14 .

This expression differs from the estimate for the planar case
(87) by the factorL, which we obtain asL=0.193 by choos-
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ing the following values, suggested by the experiment:r i
=6 mm,rv=r i +Lv=24.5 mm, andr l =r i −Ll =1 mm. In other
words, geometric effects give an approximately 5 times
smaller evaporation flow than in the planar case.

C. Heat flux and interface temperature jump

The above arguments did not use the expression for the
energy fluxQ at the interface, which, however, comes into
play to determine the temperature jumpTv−Tl at the inter-
face. We shall not try to estimate this temperature difference,
but refer the reader to our numerical solutions presented be-
low. Nevertheless, we give a qualitative discussion. First we
recall from the discussion above that the evaporation mass
flux is largely independent of the condensation coefficients
(or phenomenological coefficients). We can rewrite Eqs.(59)
and (76) as

QsTl,Tvd − JsTl,TvdhvsTvd = − kvUSdT

dz
DU

v,i
. s89d

which relates the temperatureTl to the temperatureTv and its
gradient at the interfaceusdT/drduv,i in an implicit manner.
Note that the liquid interface temperatureTl follows from
Eq. (86), so that Eq.(89) serves to computeTv.

In case of spherical symmetry, one will find the gradient
usdT/drduv,i instead, but the argument will be the same, and
the left-hand side of the equation will remain unchanged as
well. To estimate the gradients, we use the same approxima-
tions as in the above subsections to find

USdT

dz
DU

v,i
.

Tbv − Tv

Lv
, USdT

dr
DU

v,i
.

Tbv − Tv

Lv
S1 +

Lv

r i
D ,

s90d

where we have also usedrv=r i +Lv. With the experimental
data used at the end of the last section(r i =6 mm, Lv
=18.5 mm) follows that the gradient of the vapor tempera-
ture in spherical geometry is about 4 times larger then the
gradient in planar geometry. This is a remarkable change
which has marked influence on the size of the temperature
jump, as will be shown below.

For the TIP model, Eq.(89) reduces to

aS 1

Tv
−

1

Tl
D = − kv

Tbv − Tv

Lv
G,

whereG=1 in planar geometry andG=1+Lv / r i in spherical
geometry. This can be written as

S1 +
aLv

Gkv

1

TlTv
DsTv − Tld = Tbv − Tl .

This shows thatTv.Tl as long asTbv−Tl .0; both condi-
tions are observed in the experiment. Note that the tempera-
ture jump in TIP, as estimated above, is determined only by
the phenomenological law forQ (or qv) at the interface and
is independent of the evaporation ratej .

The obvious conclusion of this section is that(a) a large
temperature gradient of the vapor at the interface yields a
larger temperature jump and that(b) spherical geometry

gives a larger gradient and, therefore, favors larger jumps.

D. Heat leaks and geometry

The above arguments show that the temperature of the
liquid is close to the saturation temperatureTsat at the pre-
scribed pressure in the vaporpv and the evaporation rate
depends predominantly on the heat transferred through the
liquid to the interface, where liquid evaporates.

The amount of heat flowing into the interface depends on
the temperature of the liquid at the interface, the geometry of
the experimental apparatus, and the temperatures at the
boundaries of the apparatus. Accordingly, one can expect a
good match between theory and experiment only if the simu-
lation of the experiment includes an accurate setup of the
experiment. While this is outside the scope of the present
paper, we continue to discuss the Toronto experiments on the
base of this observation.

Since in the Toronto experiments the evaporation rate is
slow and the liquid enthalpy small, this heat is provided
through nonconvective heat transfer. Therefore we can say
that the evaporation rate is limited through the conductive
heat transfer in the liquid. The measured evaporation rate is
jexperiment.1.017310−3 kg/sm2 sd and the value predicted
for the planar case,jplanar.1.2310−3 kg/sm2 sd, is relatively
close to the measured value. However, the value predicted
for the actual—spherical—funnel geometry,jspherical=2.34
310−4 kg/sm2 sd, is far too low. The dominant factor which
gives the reduced evaporation rate in the spherical case is the
second term inL, Eq. (88), which is due to the heat transfer
in the liquid.

The above argument assumes that the funnel walls are
adiabatic, so that all heat is drawn from the funnel inlet,
where the temperature is maintained atTbl. As this heat flows
through the liquid in the funnel, it is distributed over the
larger and larger cross sections of the funnel, and thus less
heat can be provided per unit area of the interface.

Since the observed evaporation flux is larger than pre-
dicted, we must conclude that the funnel walls are not adia-
batic, so that a substantial amount of heat(enough to give an
approximately 5 times larger evaporation rate) creeps in
through the funnel walls.

In this context we recall that Ward and Stanga suggest that
the temperature gradient in the liquid is constant[4], which
would be expected in the planar case. Note, however, that the
liquid temperature measurements are concentrated near the
interface, with only one measurement at the liquid boundary.
Additional measurement points in the liquid region would be
necessary to understand the transport in the liquid better and
to confirm the constant liquid temperature gradient.

In an effort to model the experiment in a simple, but suf-
ficiently accurate manner, we also model the liquid according

TABLE II. Evaporation experimental data of Wardet al.

Experiment
pv

(Pa)
Tbl

(°C)
Ll

(mm)
Tbv
(°C)

Lv
(mm)

r i

(mm)
Lc

(mm)

E1 593 26.06 4.97 25.7 18.59 6.088 0.34
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to the planar case and the vapor according to the equations
for the spherical case. To combine a planar description of the
liquid with a spherical description of the liquid, it is neces-
sary to choose a common coordinate system. We chose a
frame where the interface is atz=0, so that have at the in-
terface,z=0 andr =r i. This impliesz=r −r i, rv=r i +Lv, and
r l =r i −Ll.

E. Constant temperature zone in liquid

Ward and Stanga[4] observe a small isothermal zone of
thicknessLc in the liquid adjacent to the interface, which
they suggest could be due to surface tension driven
Marangoni-Benard convection or energy partitioning during
the phase change process. Our simplified models do not al-
low for either of these phenomena and thus do not predict a
liquid isothermal zone. In order to be able to compare with
the experiments, we artificially introduced a small isothermal
zone into the simulations. The only effect of this is that the
effective liquid thickness becomes a bit smaller—i.e.,Ll ueff
=Ll −Lc.

IX. MODELING RESULTS

A. Models used and setup

With the aforementioned considerations, we present the
evaporation results using the constant liquid temperature
zone and purely planar, purely spherical, and mixed planar
and spherical geometries. These geometries differ consider-
ably from the geometry of the experiments, and therefore the
reader will not expect perfect agreement between simulations
and experimental data. However, this study allows the under-
standing of the basic trends and, in particular, the strong
importance of geometry on the outcome.

The results depend on the choice of models for the inter-
face expressions for mass and energy flow, and we shall use
the following models for simulations.

CE: A classical kinetic theory model, based on the
Chapman-Enskog expansion with condensation coefficient
uc=c=1, Eqs.(41), the standard Schrage model[1].

CEVEL: A kinetic theory model, based on the Chapman-
Enskog expansion and the velocity dependent condensation
coefficient (15), with variable accommodation coefficient,
Eqs.(40).

SRT: A phenomenological model, comprised of the SRT
mass flow(52) and(53) and the phenomenological law(51)
for the heat flux.

The CE model includes no free parameters, while the
CEVEL model can be fitted to experimental data by adjust-

ing the parametersc, v, andg. Other models based on ki-
netic theory are not considered here, but were tested as well.
The results showed in particular that there was no marked
difference between the models based on the Chapman-
Enskog distribution and those based on the Maxwellian, Eqs.
(26) and (28). Since this refers only to the particular setting
of the Toronto experiments, we do not wish to draw further
conclusions from this result.

The SRT model has only one adjustable parameter, which
is the phenomenological coefficienta. For the data in the
experiment the nonlinear expression(52) yields the same
results as the linear expression(54), which agrees with the
general phenomenological law(50). Moreover, as our esti-
mates in Sec. VII showed, the parameterb in the phenom-
enological models has no marked influence on the results,
and this finding was supported by numerical tests. For space
reasons, we present only solutions which useb=bSRT as
given in Eq.(55).

Table II shows the controlled data for one of the experi-
ments performed by Ward and Stanga[4,47]; other experi-
ments were similar. We chose the parameters in the
models—i.e., the coefficientsc, v, g, anda—where appli-
cable so that the simulations stand in reasonable agreement
with the measurements.

B. SRT simulations

In this case, we only need to specify the phenomenologi-
cal coefficient for heat transfer, which we chose asa=1.37
3106 sW Kd /m2. Table III shows the interface temperatures
and the mass flowj for the different geometries in compari-
son to the experiment. As expected and discussed above, the
planar geometry for the liquid gives a reasonable mass flow
not to far from the experimental value, while in spherical
geometry of the liquid the heat flow to the interface is lim-
ited, which results in a low evaporation rate. The geometry
has a strong influence on the temperature difference between
vapor and liquid at the interface, which is much larger in
case of spherical geometry for the vapor than in the planar
case.

TABLE III. Geometry dependent simulation results, SRT.

Model Tl (°C) Tv (°C) j fkg/sm2 sdg

Measured −0.4 2.6 1.017310−3

SRT planar-planar −0.33 0.0098 1.27310−3

SRT planar-spherical −0.33 2.67 1.29310−3

SRT spherical-spherical −0.34 3.26 2.47310−4

FIG. 5. Temperature profiles for SRT simulations witha=1.37
3106 sW Kd /m2. Planar-planar geometry(dashed line), planar-
spherical geometry(solid line), spherical-spherical geometry(dot-
ted line), and experimental results(dots).
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Figure 5 shows the temperature profiles for the three
cases. Of particular importance is the large temperature gra-
dient in the vapor at the interface for the spherical cases,
which leads to the larger temperature jump. Note that the
curvature of the temperature profiles agrees with the experi-
ment in the spherical case, whereas the planar case gives
opposite curvature. Finally we note that in all cases the liquid
temperature is very close to the saturation temperature
Tsatspvd, as measured.

Altogether we can state that the SRT model(52) and(53)
with the TIP expression for the interface energy flux, Eq.
(51), gives a good description of the Toronto evaporation
experiments.

C. CE model

The classical Schrage model[1], Eqs.(41), has no adjust-
able coefficients, and Table IV gives the results for interface
temperature and mass flow. The liquid temperature is again
equal to the saturation temperatureTsatspvd, and the mass
flux j has almost the same values as in the SRT case. This is
expected since we have shown that the evaporation rate de-
pends mostly on the heat transferred through the liquid,
which is independent of the model forj at the interface. The
vapor temperature at the liquid is very close to the liquid
temperature and slightly lower in the planar cases, while the
vapor has a higher temperature in the purely spherical case.
In all cases the temperature jump is small and far from that
obtained in the experiments.

Altogether it follows that the classical Schrage model can-
not describe the experiment with sufficient accuracy, since it
does not give an interface temperature jump of sufficient
magnitude.

D. CEVEL model

With models based on the velocity dependent condensa-
tion coefficient we can vary the parametersc, v, and g to
obtain agreement with the experiments. We first show results
for a case with relatively low condensation coefficient,
strong velocity dependence, and purely specular reflection of
noncondensing particles, wherec=0.05 andv=g=1. Inter-
face temperatures and mass flow are given in Table V. Figure
6 shows the corresponding temperature curves.

Again, the evaporation rate is very close to the SRT case,
for the same reasons as discussed for the CE model. Due to
the relatively small condensation coefficient, the liquid tem-
perature is now about 1 °C above the saturation temperature
Tsatspvd, in agreement with our discussion of Eq.(86).

The temperature jump at the interface is positive for
spherical vapor geometry and is as large as measured. Note
that a small negative temperature jump is predicted in purely
planar geometry.

In order to better understand the influence of the coeffi-
cients, we study the casec=0.1 andv=g=1; that is, we
assume that a larger portion of vapor particles will condense.
The results in Table VI indicate that this leads to a lower
liquid temperature, which is now closer to the saturation
temperatureTsatspvd, and to a smaller temperature jump. The
evaporation rate is almost not affected.

Next we study the influence of the accommodation coef-
ficient, by consideringc=0.05, v=1, andg=0; see Table
VII. We see that this change leaves the liquid temperature
unaffected in comparison to the first case, Table V but re-
duces the temperature jump. Thus we can conclude that an
accommodation coefficient close to unity will favor a larger
temperature jump. This makes sense, since a small accom-
modation coefficient implies many thermalizing collisions
between vapor and liquid and, hence, a better exchange of
energy that supports equilibration of temperatures.

Next we consider a case where all vapor particles con-
dense,c=1 andv=1 (note thatg plays no role in this case)
(Table VIII). Now the liquid temperature is equal to the satu-
ration temperatureTsatspvd, but the temperature jump is nega-
tive (and small) for planar liquid geometry and positive but
very small for the purely spherical case. The results are close
to those of the CE model(Table IV).

TABLE IV. Geometry dependent simulation results, CE.

Model Tl (°C) Tv (°C) j fkg/sm2 sdg

Measured −0.4 2.6 1.017310−3

CE planar-planar −0.33 −0.39 1.27310−3

CE planar-spherical −0.33 −0.35 1.30310−3

CE spherical-spherical −0.34 −0.29 2.51310−4

TABLE V. Geometry dependent simulation results, CEVEL,
with c=0.05,v=g=1.

Model Tl (°C) Tv (°C) j fkg/sm2 sdg

Measured −0.4 2.6 1.017310−3

CEVEL planar and planar 0.6172 0.6165 1.22310−3

CEVEL planar and spherical 0.63 3.12 1.25310−3

CEVEL spherical and spherical −0.15 3.41 2.45310−4

FIG. 6. Temperature profiles for CEVEL simulations withc
=0.05 andv=g=1. Planar-planar geometry(dashed line), planar-
spherical geometry(solid line), spherical-spherical geometry(dot-
ted line), and experimental results(dots).
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Finally, we ask for the influence of the coefficientv,
which determines the importance of the impact energy on the
condensation probability. For this, we considerc=0.1, v
=0.5, andg=1. From the results in Table IX follows that a
smaller value ofv leads not only to a smaller temperature
jump, but also to a different sign: for planar liquid geometry
the temperature jump is negative, while it becomes positive
in the purely spherical case.

Summarizing we can conclude that a kinetic theory model
with velocity dependent condensation coefficient can give
large and positive temperature jumps between vapor and liq-
uid at the interface. However, large temperature jumps re-
quire that only a small portion of vapor molecules that hit the
interface condense(small values ofc), that those particles
that do not condense do not exchange much energy with the
liquid (g close to unity), and that the condensation probabil-
ity for fast particles be much higher than that for slow par-
ticles (v close to unity).

Moreover, the comparison of different geometries shows
that size and sign of the temperature jump depend strongly
on the geometry.

In particular we note that for the model presented here a
large temperature jump is accompanied by a liquid interface
temperature above the saturation temperatureTsatspvd which
does not agree well with experiments, where the liquid inter-
face is found at the saturation temperature.

X. CONCLUSIONS

In this paper, we used kinetic theory arguments to derive
expressions for the mass and energy fluxes at liquid-vapor
interfaces in nonequilibrium. In particular we based the cal-
culations on a condensation coefficient that depends on the
impact energy of the condensing particle normal to the inter-
face, as suggested from molecular dynamics simulations.
This leads to a generalization of the well-known Hertz-
Knudsen and Schrage laws for the evaporation and conden-

sation rates, which now depend on parameters that describe
the velocity dependent particle condensation probability.

We also briefly reviewed basic expressions for the inter-
face fluxes that were derived by the methods of thermody-
namics of irreversible processes and statistical rate theory.

Then we considered these models for evaporation in
simple geometries, in particular 1D planar and 1D spherical
transport, in order to describe and understand the experi-
ments recently performed in Toronto by Ward, Fang, and
Stanga.

A particularly interesting feature in the experiments is the
observation of a distinct temperature jump at the interface
between vapor and liquid, where the vapor temperature is
higher than the liquid temperature. Standard kinetic theory
models predict only a very small negative temperature dif-
ference, where the liquid has a slightly higher temperature.

Our considerations revealed that the direction of the tem-
perature jump depends on geometry, and we presented cases
where even with the standard Schrage model(CE) the vapor
temperature was higher. The inclusion of the velocity depen-
dent condensation coefficient leads to more refined models
(CEVEL), with several parameters that can be adjusted to
give much larger interface temperature jumps, as observed in
the experiments.

The coefficients in the phenomenological models can also
be adjusted to yield the observed temperature jumps. Here
we used only very simple models, which ignored the cross
coupling of thermodynamic fluxes and forces. While these
simple models were sufficient to reproduce the general
trends, it is likely that cross effects must be considered to
achieve a perfect modeling of the experiments. However, this
will require an exact simulation of the experiment, including
its geometry, and therefore this question was not further con-
sidered in the present work.

A simple analysis, which is supported by our numerical
results, showed that, at least for the conditions in the Toronto
experiments, the evaporation and condensation mass flux is
mostly driven by energy flow, while the equation for the

TABLE VI. Geometry dependent simulation results, CEVEL,
with c=0.1, v=g=1.

Model Tl (°C) Tv (°C) j fkg/sm2 sdg

Measured −0.4 2.6 1.017310−3

CEVEL planar-planar 0.14 −0.038 1.25310−3

CEVEL planar-spherical 0.15 1.34 1.27310−3

CEVEL spherical-spherical −0.24 1.62 2.48310−4

TABLE VII. Geometry dependent simulation results, CEVEL,
with c=0.05,v=1, g=0.

Model Tl (°C) Tv (°C) j fkg/sm2 sdg

Measured −0.4 2.6 1.017310−3

CEVEL planar-planar 0.6172 0.6852 1.23310−3

CEVEL planar-spherical 0.63 0.75 1.25310−3

CEVEL spherical-spherical −0.14 −0.068 2.45310−4

TABLE VIII. Geometry dependent simulation results,
c=v=1.

Model Tl (°C) Tv (°C) j fkg/sm2 sdg

Measured −0.4 2.6 1.017310−3

CEVEL planar-planar −0.31 −-0.667 1.27310−3

CEVEL planar-spherical −0.31 −0.57 1.30310−3

CEVEL spherical-spherical −0.33 −0.27 2.51310−4

TABLE IX. Geometry dependent simulation results,c=0.1, v
=0.5, g=1.

Model Tl (°C) Tv (°C) j fkg/sm2 sdg

Measured −0.4 2.6 1.017310−3

CEVEL planar-planar 0.0022 −1.19 1.26310−3

CEVEL planar-spherical −0.0082 −0.195 1.28310−3

CEVEL spherical-spherical −0.296 0.83 2.49310−4
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mass flow essentially determines the liquid interface tem-
perature(Sec. IX). The latter is almost independent of the
coefficients that appear in the interface mass flow expression,
which implies that these can have almost arbitrary values and
still give results in very good agreement with experimental
data. This is the most likely reason why a wide variety of
values for these coefficients can be found in the literature.

The interface temperature jump depends on the expres-
sion for the interface energy flux, and the choice of param-
eters in these is crucial for a good agreement with the ex-
periments. This is of particular importance for the SRT
model: SRT gives an interesting and well-founded expres-
sion for the interface mass flux, but does not provide an
expression for the interface energy flow. It would be very
interesting to use SRT arguments to find such an expression.

We do not claim that our simulations of the experiments
are perfect. The two most important shortcomings are that
we modeled the water vapor as a monatomic ideal gas and
that we used very simplified geometries.

To model water vapor more realistically, the kinetic
theory treatment must be extended to incorporate the internal
degrees of freedom of the molecules. This was beyond the
scope of this paper, which aimed at first showing that veloc-
ity dependent condensation coefficients allow to better model
experiments than constant condensation coefficients.

Our discussion shows that details of the geometries of the
experimental apparatus and heat leaks have significant influ-
ence on the experimental findings. A thorough understanding
of experiments—e.g., the Toronto evaporation and condensa-
tion experiments—can only be achieved by accurately mod-
eling the experiments in all detail.
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